dpdk20.11.1学习-2.skeleton
Posted 龚喜发财+1
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了dpdk20.11.1学习-2.skeleton相关的知识,希望对你有一定的参考价值。
一.skeleton功能
基础的二层转发工具。将偶数个网口进行配对,从0接收到的包转发到1口中,从1接收到的包转发到0口中,以此类推。所以端口数需要是偶数个!,仅仅从一个网口抓取数据包转发到另外一个网口,这样做双向转发,相当于桥的功能。其他基础业务都不做。
该例程用到了内存缓冲池mbuf_pool以及mbuf进行接包转包。
二.编译及运行结果
cd examples/skeleton
make
cd build
sudo ./basicfwd
结果
EAL: Detected 1 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: Detected shared linkage of DPDK
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'PA'
EAL: No available hugepages reported in hugepages-1048576kB
EAL: Probing VFIO support...
EAL: Invalid NUMA socket, default to 0
EAL: Invalid NUMA socket, default to 0
EAL: Probe PCI driver: net_e1000_em (8086:100f) device: 0000:02:06.0 (socket 0)
EAL: Error reading from file descriptor 10: Input/output error
EAL: Invalid NUMA socket, default to 0
EAL: Probe PCI driver: net_e1000_em (8086:100f) device: 0000:02:07.0 (socket 0)
EAL: Error reading from file descriptor 18: Input/output error
EAL: No legacy callbacks, legacy socket not created
EAL: Error enabling interrupts for fd 10 (Input/output error)
Port 0 MAC: 00 0c 29 9b cf 5b
EAL: Error enabling interrupts for fd 18 (Input/output error)
Port 1 MAC: 00 0c 29 9b cf 65
Core 0 forwarding packets. [Ctrl+C to quit]
三.源码分析
1.头文件引用及宏定义
#include <stdint.h>
#include <inttypes.h>
#include <rte_eal.h>
#include <rte_ethdev.h>
#include <rte_cycles.h>
#include <rte_lcore.h>
#include <rte_mbuf.h>
#define RX_RING_SIZE 1024 //接收环的大小
#define TX_RING_SIZE 1024 //发送环的大小
#define NUM_MBUFS 8191//每个网口可以挂最多NUM_MBUFS个包(rx+tx)
#define MBUF_CACHE_SIZE 250//与内存以及高速缓存起有关
#define BURST_SIZE 32 //调用一次函数,从物理层获取的最大包数量
//网口默认配置,RX接收的数据包大小默认为ETHER链路帧包的最大值(MTU)
//以太网端口使用rte_eth_dev_configure()函数和port_conf_default结构以默认设置进行配置 :
static const struct rte_eth_conf port_conf_default =
.rxmode =
.max_rx_pkt_len = RTE_ETHER_MAX_LEN,
,
;
2.端口初始化port_init
/* basicfwd.c: Basic DPDK skeleton forwarding example. */
/*
* Initializes a given port using global settings and with the RX buffers
* coming from the mbuf_pool passed as a parameter.
*/
//基本转发应用程序中使用的端口初始化的主要功能部分
//1.获取可用 eth 的个数
//2.配置网卡设备
//3.每个 port 1 个 rx 队列
//4.每个 port 1 个 tx 队列
//5.启用网卡设备
//6.设置网卡混杂模式
static inline int
port_init(uint16_t port, struct rte_mempool *mbuf_pool)
struct rte_eth_conf port_conf = port_conf_default;//初始化网卡配置,这个rte_eth_conf结构体在配置网卡时要用到,
const uint16_t rx_rings = 1, tx_rings = 1;//每个网卡的 接收发送队列的数量
uint16_t nb_rxd = RX_RING_SIZE;//初始化当前接收队列容量
uint16_t nb_txd = TX_RING_SIZE;//初始化当前发送队列容量
int retval;//函数返回值,临时变量
uint16_t q;//临时变量,队列号
struct rte_eth_dev_info dev_info;// 用于获取以太网设备的信息,setup queue 时用到
struct rte_eth_txconf txconf;// setup tx queue 时用到
if (!rte_eth_dev_is_valid_port(port))//判断当前PORT号是否合法
return -1;
retval = rte_eth_dev_info_get(port, &dev_info); //查询以太网设备的信息,参数port指示以太网设备的网口标识符,第二个参数指向要填充信息的类型rte_eth_dev_info的结构的指针,如果成功则返回0,其余情况视错误情况返回
if (retval != 0) //如果获取失败则报错并返回该retval
printf("Error during getting device (port %u) info: %s\\n",
port, strerror(-retval));
return retval;
if (dev_info.tx_offload_capa & DEV_TX_OFFLOAD_MBUF_FAST_FREE)
port_conf.txmode.offloads |=
DEV_TX_OFFLOAD_MBUF_FAST_FREE;
//配置以太网设备
/* Configure the Ethernet device. */
// rte_eth_dev_configure()
/* 四个参数
1. port id
2. 要给该网卡配置多少个收包队列 这里是一个
3. 要给该网卡配置多少个发包队列 也是一个
4. 结构体指针类型 rte_eth_conf *
*/
retval = rte_eth_dev_configure(port, rx_rings, tx_rings, &port_conf);
if (retval != 0)
return retval;
检查Rx和Tx描述符的数量是否满足以太网设备信息中的描述符限制,否则将它们调整为边界。
retval = rte_eth_dev_adjust_nb_rx_tx_desc(port, &nb_rxd, &nb_txd);
if (retval != 0)
return retval;
//每个以太网端口分配并设置1个RX队列
//使用rte_eth_rx_queue_setup()和rte_eth_tx_queue_setup()功能将端口设置为1个RX和1个TX队列
/* Allocate and set up 1 RX queue per Ethernet port. */
/* rte_eth_rx_queue_setup()
配置rx队列需要六个参数
1. port id
2. 接收队列的索引。要在[0, rx_queue - 1] 的范围内(先前rte_eth_dev_configure中配置的)
3. 为接收环分配的接收描述符数。(环的大小)
4. socket id。 如果是 NUMA 架构 就使用 rte_eth_dev_socket_id(port)获取port所对应的以太网设备所连接上的socket的id;若不是NUMA,该值可以是宏SOCKET_ID_ANY
5. 指向rx queue的配置数据的指针。如果是NULL,则使用默认配置。
6. 指向内存池mempool的指针,从中分配mbuf去操作队列。
*/
for (q = 0; q < rx_rings; q++)
retval = rte_eth_rx_queue_setup(port, q, nb_rxd,
rte_eth_dev_socket_id(port), NULL, mbuf_pool);
if (retval < 0)
return retval;
txconf = dev_info.default_txconf;
txconf.offloads = port_conf.txmode.offloads;
//每个以太网端口分配并设置1个TX队列
/* Allocate and set up 1 TX queue per Ethernet port. */
/* rte_eth_tx_queue_setup()
配置tx队列需要五个参数(不需要mempool)
1. port id
2. 发送队列的索引。要在[0, tx_queue - 1] 的范围内(先前rte_eth_dev_configure中配置的)
3. 为发送环分配的接收描述符数。(自定义环的大小)
4. socket id
5. 指向tx queue的配置数据的指针,结构体是rte_eth_txconf。
*/
for (q = 0; q < tx_rings; q++)
retval = rte_eth_tx_queue_setup(port, q, nb_txd,
rte_eth_dev_socket_id(port), &txconf);
if (retval < 0)
return retval;
//开始以太网端口
/* Start the Ethernet port. */
retval = rte_eth_dev_start(port);
if (retval < 0)
return retval;
//展示MAC地址
/* Display the port MAC address. */
struct rte_ether_addr addr;
retval = rte_eth_macaddr_get(port, &addr);
if (retval != 0)
return retval;
printf("Port %u MAC: %02" PRIx8 " %02" PRIx8 " %02" PRIx8
" %02" PRIx8 " %02" PRIx8 " %02" PRIx8 "\\n",
port,
addr.addr_bytes[0], addr.addr_bytes[1],
addr.addr_bytes[2], addr.addr_bytes[3],
addr.addr_bytes[4], addr.addr_bytes[5]);
//在混杂模式下为以太网设备启用RX
/* Enable RX in promiscuous mode for the Ethernet device. */
retval = rte_eth_promiscuous_enable(port);
if (retval != 0)
return retval;
return 0;
3.lcore_main函数,即线程执行的函数
//这是完成工作的主线程,它从输入端口读取并写入输出端口。
/*
* The lcore main. This is the main thread that does the work, reading from
* an input port and writing to an output port.
*/
//正如我们在上面看到的,该main()函数在可用的lcore上调用应用程序函数
static __rte_noreturn void
lcore_main(void)
uint16_t port;
/*
* Check that the port is on the same NUMA node as the polling thread
* for best performance.
*/
//检查端口是否与轮询线程在同一NUMA节点上,以获得最佳性能。
// 当有NUMA结构时,检查网口是否在同一个NUMA node节点上,只有在一个NUMA node上时线程轮询的效率最好
RTE_ETH_FOREACH_DEV(port)
if (rte_eth_dev_socket_id(port) > 0 &&
rte_eth_dev_socket_id(port) !=
(int)rte_socket_id())
printf("WARNING, port %u is on remote NUMA node to "
"polling thread.\\n\\tPerformance will "
"not be optimal.\\n", port);
printf("\\nCore %u forwarding packets. [Ctrl+C to quit]\\n",rte_lcore_id());
//该应用程序的主要工作是在循环内完成的
/* Run until the application is quit or killed. */
for (;;)
/*
* Receive packets on a port and forward them on the paired
* port. The mapping is 0 -> 1, 1 -> 0, 2 -> 3, 3 -> 2, etc.
*/
RTE_ETH_FOREACH_DEV(port) //遍历每一个网口
/* Get burst of RX packets, from first port of pair. */
struct rte_mbuf *bufs[BURST_SIZE];// mbuf的结构体 收到的包存在这里,也是要发出去的包
const uint16_t nb_rx = rte_eth_rx_burst(port, 0,bufs, BURST_SIZE);//物理口收包函数
// unlikely()是一种分支预测,表明大概率nb_rx != 0
//也就是该网口大概率会接收到包
//算是一种编译优化的方法
// 返回值是实际收到的数据包数
if (unlikely(nb_rx == 0))
continue;
//物理口发包函数
/* Send burst of TX packets, to second port of pair. */
const uint16_t nb_tx = rte_eth_tx_burst(port ^ 1, 0,bufs, nb_rx);// port 异或 1 --> 0就和1是一对,2就和3是一对。
// 0 收到包就从 1 转发, 3 收到包 就从 2 口转发。
//对于发不出去的包就把内存释放掉,也就是drop这些包
//对于DPDK的收包和转发来说,都是一次处理多个数据包
//原因是cache行的内存对齐可以一次处理多个地址
//并且可以充分利用处理器内部的乱序执行和并行处理能力
/* Free any unsent packets. */
if (unlikely(nb_tx < nb_rx))
uint16_t buf;
for (buf = nb_tx; buf < nb_rx; buf++)
rte_pktmbuf_free(bufs[buf]);
4.main函数
int
main(int argc, char *argv[])
struct rte_mempool *mbuf_pool;// 指向内存池结构的指针
unsigned nb_ports;//网口个数
uint16_t portid;//网口号
//第一项任务是初始化环境抽象层(EAL)。在 argc和argv参数提供给rte_eal_init() 函数。返回的值是已解析参数的数量:
/* Initialize the Environment Abstraction Layer (EAL). */
int ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Error with EAL initialization\\n");
//当解析完了EAL的参数之后,argc减去EAL参数的个数同时argv后移这么多位,
//这样就能保证后面解析程序参数的时候跳过了前面的EAL参数。
argc -= ret;
argv += ret;
//端口数必须是偶数个 &是按位与运算,如果为奇数,则nb_ports最后一位是1,和1进行按位与运算结果为1,若为偶数,则最后一位为0,与1进行按位与则结果为0
/* Check that there is an even number of ports to send/receive on. */
nb_ports = rte_eth_dev_count_avail();
if (nb_ports < 2 || (nb_ports & 1))
rte_exit(EXIT_FAILURE, "Error: number of ports must be even\\n");
//在main中分配一个内存池保持由应用程序使用的的mbuf(消息缓冲器),Mbuf是DPDK使用的数据包缓冲区结构
//创建一个内存缓冲池,大小为 NUM_MBUFS*网卡数量
/* Creates a new mempool in memory to hold the mbufs. */
//rte_socket_id()返回正在运行的lcore所对应的物理socket。socket的文档在 lcore中
mbuf_pool = rte_pktmbuf_pool_create("MBUF_POOL", NUM_MBUFS * nb_ports,
MBUF_CACHE_SIZE, 0, RTE_MBUF_DEFAULT_BUF_SIZE, rte_socket_id());
if (mbuf_pool == NULL)
rte_exit(EXIT_FAILURE, "Cannot create mbuf pool\\n");
//还使用用户定义的port_init()函数来初始化所有端口
/* Initialize all ports. */
RTE_ETH_FOREACH_DEV(portid)
if (port_init(portid, mbuf_pool) != 0)
rte_exit(EXIT_FAILURE, "Cannot init port %"PRIu16 "\\n",portid);
//只需要一个逻辑核
if (rte_lcore_count() > 1)
printf("\\nWARNING: Too many lcores enabled. Only 1 used.\\n");
//初始化完成后,应用程序即可在lcore上启动功能。在此示例lcore_main()中,在单个lcore上调用。
/* Call lcore_main on the main core only. */
lcore_main();
return 0;
五.参考:https://blog.csdn.net/qq_39992615/article/details/103803632
https://blog.csdn.net/qq_34863439/article/details/102465309
以上是关于dpdk20.11.1学习-2.skeleton的主要内容,如果未能解决你的问题,请参考以下文章