如何计算目标函数中的子和? Gurobi优化
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何计算目标函数中的子和? Gurobi优化相关的知识,希望对你有一定的参考价值。
我需要最小化以下功能:enter image description here
其中d_it - 二进制数组:d_it = [[1,0,0,1,0,0,0],[1,0,1,1,0,0,0],...] x_it - 从d_it到下一个1。 例如:df = [3763398,2029384,2976081,3269537,2698083,2519153,2415021] 如果d_0 = [1,0,0,1,0,0,0] 然后 x_00 = 3763398 + 2029384 + 2976081,x_03 = 3269537 + 2698083 + 2519153 + 2415021
from gurobipy import *
atm_frame = [[3763398, 2029384, 2976081, 3269537, 2698083, 2519153, 2415021],
[0, 0, 2447076, 2653185, 2705684, 2836803, 2292156]]
N = 2
T = 7
d = {}
Q = 3
def calc_F(atm_frame):
F = 0.1017/365
amount = sum(atm_frame)
result = 0
for i in atm_frame:
result += amount * F
amount -= i
return int(result)
#This function finds the window length to the next 1
#Input: atm_num - i, start - t
def find_window(atm_num, start):
try:
days = [d[atm_num,t].x for t in range(T)]
except:
days = [1, 0, 0, 0, 0, 0, 0]
print(days)
win_size = 0
if start == T-1:
return 0
else:
for i in range(start+1,T):
if not days[i]:
win_size += 1
else:
break
return win_size
m = Model('ATM Optimize')
for i in range(N):
for t in range(T):
d[i,t] = m.addVar(obj=1, vtype=GRB.BINARY, name="d(%s,%s)" % (i,t))
m.addConstr(quicksum(d[i,t] for i in range(N) for t in range(T)) == Q)
m.update()
obj=quicksum(quicksum((calc_F(atm_frame[i][t:t+find_window(i,t)]))*d[i,t] for t in range(T)) for i in range(N))
m.setObjective(obj, GRB.MINIMIZE)
m.optimize()
在第一次迭代中,变量没有值。我尝试使用try / except手动设置它,但是没有出现变量的值。输出:
[1, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0]
[1, 0, 0, 0, 0, 0, 0]
Optimize a model with 1 rows, 14 columns and 14 nonzeros
Variable types: 0 continuous, 14 integer (14 binary)
Coefficient statistics:
Matrix range [1e+00, 1e+00]
Objective range [7e+02, 2e+04]
Bounds range [1e+00, 1e+00]
RHS range [3e+00, 3e+00]
Found heuristic solution: objective 35468.000000
Presolve removed 0 rows and 1 columns
Presolve time: 0.00s
Presolved: 1 rows, 13 columns, 13 nonzeros
Variable types: 0 continuous, 13 integer (12 binary)
Root relaxation: objective 7.010000e+02, 1 iterations, 0.00 seconds
Nodes | Current Node | Objective Bounds | Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
* 0 0 0 701.0000000 701.00000 0.00% - 0s
Explored 0 nodes (1 simplex iterations) in 0.02 seconds
Thread count was 8 (of 8 available processors)
Solution count 2: 701 35468
Optimal solution found (tolerance 1.00e-04)
Best objective 7.010000000000e+02, best bound 7.010000000000e+02, gap 0.0000%
{(0, 0): <gurobi.Var d(0,0) (value -0.0)>, (0, 1): <gurobi.Var d(0,1) (value -0.0)>, (0, 2): <gurobi.Var d(0,2) (value -0.0)>, (0, 3): <gurobi.Var d(0,3) (value -0.0)>, (0, 4): <gurobi.Var d(0,4) (value -0.0)>, (0, 5): <gurobi.Var d(0,5) (value 1.0)>, (0, 6): <gurobi.Var d(0,6) (value 1.0)>, (1, 0): <gurobi.Var d(1,0) (value -0.0)>, (1, 1): <gurobi.Var d(1,1) (value -0.0)>, (1, 2): <gurobi.Var d(1,2) (value -0.0)>, (1, 3): <gurobi.Var d(1,3) (value -0.0)>, (1, 4): <gurobi.Var d(1,4) (value -0.0)>, (1, 5): <gurobi.Var d(1,5) (value -0.0)>, (1, 6): <gurobi.Var d(1,6) (value 1.0)>}
变量值的每次迭代都不会出现,但是在gurobi的末尾会设置一些随机值。是否有可能以另一种方式计算金额?
看来你的d是空的???天= [d [atm_num,t] .x,范围(T)中的t]和x是什么?
如果我理解你的问题,你可以像delow一样:
from gurobipy import *
atm_frame = [[3763398, 2029384, 2976081, 3269537, 2698083, 2519153, 2415021],
[0, 0, 2447076, 2653185, 2705684, 2836803, 2292156]]
N = 2
T = 7
#d = {}
d = [[1, 0, 0, 1, 0, 0, 0], [1, 0, 1, 1, 0, 0, 1], [1, 0, 1, 0, 1, 0, 0],
[1, 0, 1, 1, 0, 0, 1], [1, 1, 0, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0, 1]]
Q = 3
def calc_F(atm_frame):
F = 0.1017/365
amount = sum(atm_frame)
result = 0
for i in atm_frame:
result += amount * F
amount -= i
return int(result)
#This function finds the window length to the next 1
#Input: atm_num - i, start - t
def find_window(atm_num, start):
try:
days = [d[atm_num][t] for t in range(T)]
except:
days = [1, 0, 0, 0, 0, 0, 0]
print(days)
win_size = 0
if start == T-1:
return 0
else:
for i in range(start+1,T):
if not days[i]:
win_size += 1
else:
break
return win_size
m = Model('ATM Optimize')
x={}
for i in range(N):
for t in range(T):
x[i,t] = m.addVar(vtype=GRB.BINARY, name="d(%s,%s)" % (i,t))
m.addConstr(quicksum(x[i,t] for i in range(N) for t in range(T)) == Q)
m.update()
obj=quicksum(quicksum((calc_F(atm_frame[i][t:t+find_window(i,t)]))*x[i,t] for t in range(T)) for i in range(N))
m.setObjective(obj, GRB.MINIMIZE)
m.optimize()
x={}
for i in range(N):
for t in range(T):
x.update({(i,t): atm_frame[i][t]})
obj=quicksum(quicksum(x[i,t]*d[i,t] for t in range(T)) for i in range(N))
m.setObjective(obj, GRB.MINIMIZE)
m.optimize()
# this will give you the result in dictionnary
if m.SolCount>0 or status == GRB.Status.OPTIMAL:
sol_d=m.getAttr('x',d)
D_d={}
for i in range(N):
for t in range(T):
D_d.update({(i,t):sol_d[i,t]})
以上是关于如何计算目标函数中的子和? Gurobi优化的主要内容,如果未能解决你的问题,请参考以下文章
gurobi 6.0.2 / setPWLObj 的分段线性目标崩溃
Android 逆向Android 进程注入工具开发 ( 注入代码分析 | 远程调用 目标进程中 libc.so 动态库中的 mmap 函数 二 | 准备参数 | 远程调用 mmap 函数 )(代码片