ggplot2 stat_compare_means和wilcox.test中的p值不同

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ggplot2 stat_compare_means和wilcox.test中的p值不同相关的知识,希望对你有一定的参考价值。

我尝试使用ggplot函数将p值添加到我的stat_compare_means。但是,我在ggplot中得到的p值与基本wilcox.test的结果不同。

我在两种情况下都使用了配对测试,并且还在ggplot中使用了wilcoxon测试。

我试图搜索我的问题,但找不到确切的答案。我更新了R(v.3.5.2),R-Studio(v.1.1.463)和所有包。在下面我添加了一些代码行代码。我是R和统计数据的新手,如果我以新手的方式问我,请原谅我。

library("ggplot2")  
library("ggpubr")


c1 <- c( 798.3686, 2560.9974,  688.3051,  669.8265, 2750.6638, 1136.3535,  
         1335.5696, 2347.2777, 1149.1940,  901.6880, 1569.0731 ,3915.6719,  
         3972.0250 ,5517.5016, 4616.6393, 3232.0120, 4020.9727, 2249.4150,  
         2226.4108, 2582.3705, 1653.4801, 3162.2784, 3199.1923, 4792.6118)  
c2 <- c(0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1)  

test <-data.frame(c2,c1)  

test$c2 <- as.factor(test$c2)  

ggplot(test, aes(x=c2, y=c1)) +  
  stat_compare_means(paired = TRUE)  

wilcox.test( test$c1~ test$c2, paired= TRUE)  

ggplot中stat_compare_means的结果

Wilcoxon签名等级测试的结果:

数据:通过测试$ c2测试$ c1 V = 0,p值= 0.0004883 备选假设:真正的位置偏移不等于0

如您所见,结果是ggplot中的p = 0.0025和基本wilcox.test函数的p = 0.0004883。你知道为什么会有所不同吗?哪个值是正确的?

PS:我试图用ToothGrowths做同样的事情。在那种情况下,stat_compare_meanswilcox.test的结果显示相同的结果:p = 0.004313。我不知道为什么它不适用于我的数据:/

答案

在一种情况下,p值是精确的,而在另一种情况下,它是正态近似值。

wilcox.test( test$c1~ test$c2, paired = TRUE, exact = TRUE)
# Wilcoxon signed rank test
# 
# data:  test$c1 by test$c2
# V = 0, p-value = 0.0004883
# alternative hypothesis: true location shift is not equal to 0

wilcox.test( test$c1~ test$c2, paired = TRUE, exact = FALSE)
# Wilcoxon signed rank test with continuity correction
# 
# data:  test$c1 by test$c2
# V = 0, p-value = 0.002526
# alternative hypothesis: true location shift is not equal to 0

根据help(wilcox.test),如果样本包含少于50个值(如您的情况),则计算精确的p值(除非您另行指定)。

stat_compare_means有一个method.args参数,但它似乎没有正确通过exact = TRUE规范。相反,您可以先准确计算p值,然后将其添加到绘图中:

exact_pvalue <-
  wilcox.test( test$c1~ test$c2, paired = TRUE, exact = TRUE) %>%
  # Format the test output as a tibble
  broom::tidy() %>%
  # Format the p-value
  mutate(pval_fmt = format.pval(p.value, digits = 2)) %>%
  # Specify position in (c1, c2) coordinates
  mutate(c1 = 5518, c2 = 0)
exact_pvalue
# A tibble: 1 x 7
#  statistic  p.value method                    alternative pval_fmt    c1    c2
#      <dbl>    <dbl> <chr>                     <chr>       <chr>    <dbl> <dbl>
#1         0 0.000488 Wilcoxon signed rank test two.sided   0.00049   5518     0

ggplot(test, aes(x=c2, y=c1)) +
  geom_text(aes(label = glue::glue("Wilcoxon p = {pval_fmt}")), 
            data = exact_pvalue)

您可以概括这种方法同时执行多个测试,并在最后创建一个多面图。需要更多地使用整齐的魔法。

library("tidyverse")

test2 <-
  # Fake data with two subsets to run to test on (in this case the p-value
  # will be the same because the subsets actually contain the same data).
  bind_rows(test, test, .id = "subset") %>%
  # Group by subset and nest the data columns. This creates a "list of
  # tibbles" column called "data".
  group_by(subset) %>%
  nest() %>%
  # Use `purrr::map` to perform the test on each group.
  mutate(wilcox = map(data, ~ wilcox.test(.x$c1 ~ .x$c2,
                                          paired = TRUE, exact = TRUE))) %>%
  # And again `purrr::map` to tidy the test results.
  # Now we have two list columns, one with the data and the other with 
  # the test results
  mutate(wilcox = map(wilcox, broom::tidy))
test2
# A tibble: 2 x 3
# subset data              wilcox
# <chr>  <list>            <list>
#   1 1      <tibble [24 x 2]> <tibble [1 x 4]>
#   2 2      <tibble [24 x 2]> <tibble [1 x 4]>

test2 %>%
  unnest(data) %>%
  ggplot(aes(c1, c2)) +
  # Plot the raw data
  geom_point() +
  # Add the p-value
  geom_text(data = test2 %>% unnest(wilcox),
            # Specify the aestetic mapping so that the p-value is
            # plotted in the top right corner of each plot.
            aes(x = Inf, y = Inf, label = format.pval(p.value, digits = 2)),
            inherit.aes = FALSE, hjust = "inward", vjust = "inward") +
  # Do this for each subset in its own subplot.
  facet_wrap(~ subset)

以上是关于ggplot2 stat_compare_means和wilcox.test中的p值不同的主要内容,如果未能解决你的问题,请参考以下文章

R - stat_compare_means 从 Kruskal-Wallis 测试返回不同的值

ggpubr:更改 stat_compare_means Kruskal-Wallis p 值的字体大小

将自定义注释添加到 p 值标签到 ggpubr stat_compare_means()

1.ggplot2——简介

R语言ggplot2可视化将X轴置于ggplot2图表顶部实战

如何使用 ggplot2