可重复使用的Pytorch结果和随机种子

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了可重复使用的Pytorch结果和随机种子相关的知识,希望对你有一定的参考价值。

我有一个简单的玩具NN与Pytorch。我正在设置我可以在文档中找到的所有种子以及numpy随机。

如果我从上到下运行下面的代码,结果似乎是可重现的。

但是,如果我只运行一次块1然后每次运行块2,结果会发生变化(有时是显着的)。我不确定为什么会发生这种情况,因为每次重新初始化网络并重置优化器。

我使用的是0.4.0版本

BLOCK #1

from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

import torch
import torch.utils.data as utils_data
from torch.autograd import Variable
from torch import optim, nn
from torch.utils.data import Dataset 
import torch.nn.functional as F
from torch.nn.init import xavier_uniform_, xavier_normal_,uniform_

torch.manual_seed(123)

import random
random.seed(123)


from sklearn.datasets import load_boston
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split

%matplotlib inline 

cuda=True #set to true uses GPU

if cuda:
    torch.cuda.manual_seed(123)

#load boston data from scikit
boston = load_boston()
x=boston.data
y=boston.target
y=y.reshape(y.shape[0],1)

#train and test
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3, random_state=123, shuffle=False)


#change to tensors
x_train = torch.from_numpy(x_train)
y_train = torch.from_numpy(y_train)

#create dataset and use data loader
training_samples = utils_data.TensorDataset(x_train, y_train)
data_loader_trn = utils_data.DataLoader(training_samples, batch_size=64,drop_last=False)

#change to tensors
x_test = torch.from_numpy(x_test)
y_test = torch.from_numpy(y_test)

#create dataset and use data loader
testing_samples = utils_data.TensorDataset(x_test, y_test)
data_loader_test = utils_data.DataLoader(testing_samples, batch_size=64,drop_last=False)

#simple model
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()

        #all the layers
        self.fc1   = nn.Linear(x.shape[1], 20)
        xavier_uniform_(self.fc1.weight.data) #this is how you can change the weight init
        self.drop = nn.Dropout(p=0.5)
        self.fc2   = nn.Linear(20, 1)


    def forward(self, x):
        x = F.relu(self.fc1(x))
        x=  self.drop(x)
        x = self.fc2(x)
        return x

BLOCK #2

net=Net()

if cuda:
    net.cuda()

# create a stochastic gradient descent optimizer
optimizer = optim.Adam(net.parameters())
# create a loss function (mse)
loss = nn.MSELoss(size_average=False)

# run the main training loop
epochs =20
hold_loss=[]

for epoch in range(epochs):
    cum_loss=0.
    cum_records_epoch =0

    for batch_idx, (data, target) in enumerate(data_loader_trn):
        tr_x, tr_y = data.float(), target.float()
        if cuda:
            tr_x, tr_y = tr_x.cuda(), tr_y.cuda() 

        # Reset gradient
        optimizer.zero_grad()

        # Forward pass
        fx = net(tr_x)
        output = loss(fx, tr_y) #loss for this batch

        cum_loss += output.item() #accumulate the loss

        # Backward 
        output.backward()

        # Update parameters based on backprop
        optimizer.step()

        cum_records_epoch +=len(tr_x)
        if batch_idx % 1 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]	Loss: {:.6f}'.format(
            epoch, cum_records_epoch, len(data_loader_trn.dataset),
            100. * (batch_idx+1) / len(data_loader_trn), output.item()))
    print('Epoch average loss: {:.6f}'.format(cum_loss/cum_records_epoch))

    hold_loss.append(cum_loss/cum_records_epoch)  

#training loss
plt.plot(np.array(hold_loss))
plt.show()
答案

Possible Reason

不知道“有时是戏剧性的差异”是什么,很难肯定回答;但运行[block_1 x1; block_2 x1] xN(读“运行block_1然后block_2一次;并重复两次操作N次)和[block_1 x1; block_2 xN] x1有不同的结果是有道理的,假设伪随机数生成器(PRNGs)和种子工作。

在第一种情况下,您在每个block_1之后重新初始化block_2中的PRNG,因此N的每个block_2实例将访问相同的伪随机数序列,之前由每个block_1播种。

在第二种情况下,PRNG仅通过单个block_1运行初始化一次。所以block_2的每个实例都会有不同的随机值。

(有关PRNG和种子的更多信息,您可以查看:random.seed(): What does it do?


Simplified Example

让我们假设numpy / CUDA / pytorch实际上使用了一个非常差的PRNG,它只返回递增的值(即PRNG(x_n) = PRNG(x_(n-1)) + 1x_0 = seed)。如果你使用0播种这个生成器,它将返回1第一次random()调用,2第二次调用,等等。

现在,为了示例,还要简化块:

def block_1():
    seed = 0
    print("seed: {}".format(seed))
    prng.seed(seed)

--

def block_2():
    res = "random results:"
    for i in range(4):
         res  += " {}".format(prng.random())
    print(res)

让我们将[block_1 x1; block_2 x1] xN[block_1 x1; block_2 xN] x1N=3进行比较:

for i in range(3):
    block_1()
    block_2()
# > seed: 0
# > random results: 1 2 3 4
# > seed: 0
# > random results: 1 2 3 4
# > seed: 0
# > random results: 1 2 3 4


block_1()
for i in range(3):
    block_2()
# > seed: 0
# > random results: 1 2 3 4
# > random results: 4 5 6 7
# > random results: 8 9 10 11

以上是关于可重复使用的Pytorch结果和随机种子的主要内容,如果未能解决你的问题,请参考以下文章

设置随机种子复现PytorchTensorFlow结果

pytorch实现网络的保存和提取

SQL Server 中的伪随机可重复排序(不是 NEWID() 和 RAND())

Pytorch的Reproducibility(可复现性)

PyTorch DataLoader 对并行运行的批次使用相同的随机种子

关于分位数估计的可重复性