访问大熊猫数据一百万次 - 需要提高效率

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了访问大熊猫数据一百万次 - 需要提高效率相关的知识,希望对你有一定的参考价值。

我是一名试图验证实验的生物学家。在我的实验中,我在特定治疗后发现了71个突变。为了确定这些突变是否真的是由于我的治疗,我想将它们与一组随机产生的突变进行比较。有人告诉我,我可能会尝试生成一百万套71个随机突变用于统计比较。

首先,我有一个数据框,其中包含感兴趣的基因组中的7000个基因。我知道他们的开始和结束位置。数据帧的前五行如下所示:

    transcript_id   protein_id  start   end kogClass
0   g2.t1   695054  1   1999    Replication, recombination and repair 
1   g3.t1   630170  2000    3056    General function prediction only 
2   g5.t1   695056  3057    4087    Signal transduction mechanisms 
3   g6.t1   671982  4088    5183    N/A
4   g7.t1   671985  5184    8001    Chromatin structure and dynamics 

现在大约有一百万套71个随机突变:我已经编写了一个我称之为一百万次的函数,它看起来效率不高,因为在4小时后它只有1/10。这是我的代码。如果有人能提出加快速度的方法,我会欠你一杯啤酒!我的赞赏。

def get_71_random_genes(df, outfile):
    # how many nucleotides are there in all transcripts?
    end_pos_last_gene = df.iloc[-1,3]

    # this loop will go 71 times
    for i in range(71):
        # generate a number from 1 to the end of all transcripts
        random_number = randint(1, end_pos_last_gene)
        # this is the boolean condition - checks which gene a random number falls within 
        mask = (df['start'] <= random_number) & (df['end'] >= random_number)
        # collect the rows that match
        data = df.loc[mask]
        # write data to file.
        data.to_csv(outfile, sep='	', index=False, header=False)
答案

我很确定以下所有内容:

for i in range(71):
    # generate a number from 1 to the end of all transcripts
    random_number = randint(1, end_pos_last_gene)
    # this is the boolean condition - checks which gene a random number falls within 
    mask = (df['start'] <= random_number) & (df['end'] >= random_number)
    # collect the rows that match
    data = df.loc[mask]
    # write data to file.
    data.to_csv(outfile, sep='	', index=False, header=False)

从数据帧中选择71个随机行而不进行替换。请注意,这是永远的,因为每次你这样做

(df['start'] <= random_number) & (df['end'] >= random_number)

您遍历整个数据框三次,然后再执行以下操作:

data = df.loc[mask]

这是一种非常低效的抽样方式。您可以通过随机抽样71个索引,然后直接在数据帧上使用这些索引(在数据帧上甚至不需要单个完整传递)来更有效地做到这一点。但是你不需要这样做,pd.DataFrame对象已经实现了一个有效的样本方法,所以观察:

In [12]: df = pd.DataFrame(np.random.randint(0, 20, (10, 10)), columns=["c%d"%d for d in range(10)])

In [13]: df
Out[13]:
   c0  c1  c2  c3  c4  c5  c6  c7  c8  c9
0  13   0  19   5   6  17   5  14   5  15
1   2   4   0  16  19  11  16   3  11   1
2  18   3   1  18  12   9  13   2  18  12
3   2   6  14  12   1   2  19  16   0  14
4  17   5   6  13   7  15  10  18  13   8
5   7  19  18   3   1  11  14   6  13  16
6  13   5  11   0   2  15   7  11   0   2
7   0  19  11   3  19   3   3   9   8  10
8   6   8   9   3  12  18  19   8  11   2
9   8  17  16   0   8   7  17  11  11   0

In [14]: df.sample(3, replace=True)
Out[14]:
   c0  c1  c2  c3  c4  c5  c6  c7  c8  c9
0  13   0  19   5   6  17   5  14   5  15
3   2   6  14  12   1   2  19  16   0  14
3   2   6  14  12   1   2  19  16   0  14

In [15]: df.sample(3, replace=True)
Out[15]:
   c0  c1  c2  c3  c4  c5  c6  c7  c8  c9
9   8  17  16   0   8   7  17  11  11   0
4  17   5   6  13   7  15  10  18  13   8
2  18   3   1  18  12   9  13   2  18  12

In [16]: df.sample(3, replace=True)
Out[16]:
   c0  c1  c2  c3  c4  c5  c6  c7  c8  c9
3   2   6  14  12   1   2  19  16   0  14
8   6   8   9   3  12  18  19   8  11   2
4  17   5   6  13   7  15  10  18  13   8

所以只需将该循环替换为:

df.sample(71, replace=True).to_csv(outfile, sep='	', index=False, header=False)

注意,这也减少了I / O开销!

所以,只是做一个快速测试:

In [4]: import time
   ...: start = time.time()
   ...: with open('test.csv', 'w') as f:
   ...:     for _ in range(1000):
   ...:         df.sample(71, replace=True).to_csv(f, header=None, index=False)
   ...: stop = time.time()
   ...:

In [5]: stop - start
Out[5]: 0.789172887802124

因此,线性推断,我会考虑1,000,000次:

In [8]: (stop - start) * 1000
Out[8]: 789.172887802124

几秒钟,所以有点超过10分钟

In [10]: !wc -l test.csv
   71000 test.csv

Edit to add a more valid approach

因此,创建一个映射到数据框中索引的数组:

size = df.end.max()

nucleotide_array = np.zeros(size, dtype=np.int) # this could get out of hand without being careful of our size

for row in df.itertuples(): # might be alittle slow, but its a one-time upfront cost
    i = row.start - 1
    j = row.end
    nucleotide_array[i:j] = row.Index

# sampling scheme:
with open('test.csv', 'w') as f:
    for _ in range(1000): # how ever many experiments
        snps = np.random.choice(nucleotide_array, 71, replace=True)
        df.loc[snps].to_csv(f, header=None, index=False)

注意上面是一个快速草图,还没有真正测试过。它做了假设,但我认为他们坚持,无论如何,你可以很容易地使你的df成功,这样它就会起作用。

以上是关于访问大熊猫数据一百万次 - 需要提高效率的主要内容,如果未能解决你的问题,请参考以下文章

一个效率比较高红包算法

当有大量数据[超过一百万行] [重复]时,改进 R 中的循环以提高时间效率

运行一百万次扫描的 hbase mapreduce 作业是不是有意义?

每秒超一百万次请求,Netflix如何做负载均衡?

熊猫-遍历一百万个单元格

Matlab 之 数据元素访问