访问大熊猫数据一百万次 - 需要提高效率
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了访问大熊猫数据一百万次 - 需要提高效率相关的知识,希望对你有一定的参考价值。
我是一名试图验证实验的生物学家。在我的实验中,我在特定治疗后发现了71个突变。为了确定这些突变是否真的是由于我的治疗,我想将它们与一组随机产生的突变进行比较。有人告诉我,我可能会尝试生成一百万套71个随机突变用于统计比较。
首先,我有一个数据框,其中包含感兴趣的基因组中的7000个基因。我知道他们的开始和结束位置。数据帧的前五行如下所示:
transcript_id protein_id start end kogClass
0 g2.t1 695054 1 1999 Replication, recombination and repair
1 g3.t1 630170 2000 3056 General function prediction only
2 g5.t1 695056 3057 4087 Signal transduction mechanisms
3 g6.t1 671982 4088 5183 N/A
4 g7.t1 671985 5184 8001 Chromatin structure and dynamics
现在大约有一百万套71个随机突变:我已经编写了一个我称之为一百万次的函数,它看起来效率不高,因为在4小时后它只有1/10。这是我的代码。如果有人能提出加快速度的方法,我会欠你一杯啤酒!我的赞赏。
def get_71_random_genes(df, outfile):
# how many nucleotides are there in all transcripts?
end_pos_last_gene = df.iloc[-1,3]
# this loop will go 71 times
for i in range(71):
# generate a number from 1 to the end of all transcripts
random_number = randint(1, end_pos_last_gene)
# this is the boolean condition - checks which gene a random number falls within
mask = (df['start'] <= random_number) & (df['end'] >= random_number)
# collect the rows that match
data = df.loc[mask]
# write data to file.
data.to_csv(outfile, sep=' ', index=False, header=False)
我很确定以下所有内容:
for i in range(71):
# generate a number from 1 to the end of all transcripts
random_number = randint(1, end_pos_last_gene)
# this is the boolean condition - checks which gene a random number falls within
mask = (df['start'] <= random_number) & (df['end'] >= random_number)
# collect the rows that match
data = df.loc[mask]
# write data to file.
data.to_csv(outfile, sep=' ', index=False, header=False)
从数据帧中选择71个随机行而不进行替换。请注意,这是永远的,因为每次你这样做
(df['start'] <= random_number) & (df['end'] >= random_number)
您遍历整个数据框三次,然后再执行以下操作:
data = df.loc[mask]
这是一种非常低效的抽样方式。您可以通过随机抽样71个索引,然后直接在数据帧上使用这些索引(在数据帧上甚至不需要单个完整传递)来更有效地做到这一点。但是你不需要这样做,pd.DataFrame
对象已经实现了一个有效的样本方法,所以观察:
In [12]: df = pd.DataFrame(np.random.randint(0, 20, (10, 10)), columns=["c%d"%d for d in range(10)])
In [13]: df
Out[13]:
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
0 13 0 19 5 6 17 5 14 5 15
1 2 4 0 16 19 11 16 3 11 1
2 18 3 1 18 12 9 13 2 18 12
3 2 6 14 12 1 2 19 16 0 14
4 17 5 6 13 7 15 10 18 13 8
5 7 19 18 3 1 11 14 6 13 16
6 13 5 11 0 2 15 7 11 0 2
7 0 19 11 3 19 3 3 9 8 10
8 6 8 9 3 12 18 19 8 11 2
9 8 17 16 0 8 7 17 11 11 0
In [14]: df.sample(3, replace=True)
Out[14]:
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
0 13 0 19 5 6 17 5 14 5 15
3 2 6 14 12 1 2 19 16 0 14
3 2 6 14 12 1 2 19 16 0 14
In [15]: df.sample(3, replace=True)
Out[15]:
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
9 8 17 16 0 8 7 17 11 11 0
4 17 5 6 13 7 15 10 18 13 8
2 18 3 1 18 12 9 13 2 18 12
In [16]: df.sample(3, replace=True)
Out[16]:
c0 c1 c2 c3 c4 c5 c6 c7 c8 c9
3 2 6 14 12 1 2 19 16 0 14
8 6 8 9 3 12 18 19 8 11 2
4 17 5 6 13 7 15 10 18 13 8
所以只需将该循环替换为:
df.sample(71, replace=True).to_csv(outfile, sep=' ', index=False, header=False)
注意,这也减少了I / O开销!
所以,只是做一个快速测试:
In [4]: import time
...: start = time.time()
...: with open('test.csv', 'w') as f:
...: for _ in range(1000):
...: df.sample(71, replace=True).to_csv(f, header=None, index=False)
...: stop = time.time()
...:
In [5]: stop - start
Out[5]: 0.789172887802124
因此,线性推断,我会考虑1,000,000次:
In [8]: (stop - start) * 1000
Out[8]: 789.172887802124
几秒钟,所以有点超过10分钟
In [10]: !wc -l test.csv
71000 test.csv
Edit to add a more valid approach
因此,创建一个映射到数据框中索引的数组:
size = df.end.max()
nucleotide_array = np.zeros(size, dtype=np.int) # this could get out of hand without being careful of our size
for row in df.itertuples(): # might be alittle slow, but its a one-time upfront cost
i = row.start - 1
j = row.end
nucleotide_array[i:j] = row.Index
# sampling scheme:
with open('test.csv', 'w') as f:
for _ in range(1000): # how ever many experiments
snps = np.random.choice(nucleotide_array, 71, replace=True)
df.loc[snps].to_csv(f, header=None, index=False)
注意上面是一个快速草图,还没有真正测试过。它做了假设,但我认为他们坚持,无论如何,你可以很容易地使你的df成功,这样它就会起作用。
以上是关于访问大熊猫数据一百万次 - 需要提高效率的主要内容,如果未能解决你的问题,请参考以下文章
当有大量数据[超过一百万行] [重复]时,改进 R 中的循环以提高时间效率