使用PyCUDA和固定内存的dot产品

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用PyCUDA和固定内存的dot产品相关的知识,希望对你有一定的参考价值。

我目前正在使用PyCUDA处理带有固定内存的点积。我有大阵列的问题。

我正在与:

  • NVIDIA GTX 1060
  • CUDA 9.1
  • PyCUDA 2017.1.1

代码是:

#!/usr/bin/env python

import numpy as np
import argparse
import math
import pycuda.autoinit
import pycuda.driver as drv
from pycuda.compiler import SourceModule

from time import time

dot_mod = SourceModule("""
__global__ void full_dot( double* v1, double* v2, double* out, int N ) {
    __shared__ double cache[ 1024 ];
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    cache[ threadIdx.x ] = 0.f;
    while( i < N ) {
        cache[ threadIdx.x ] += v1[ i ] * v2[ i ];
        i += gridDim.x * blockDim.x;
    }
    __syncthreads(); // required because later on the current thread is accessing
                     // data written by another thread    
    i = 1024 / 2;
    while( i > 0 ) {
        if( threadIdx.x < i ) cache[ threadIdx.x ] += cache[ threadIdx.x + i ];
        __syncthreads();
        i /= 2; //not sure bitwise operations are actually faster
    }

#ifndef NO_SYNC // serialized access to shared data; 
    if( threadIdx.x == 0 ) atomicAdd( out, cache[ 0 ] );
#else // no sync, what most likely happens is:
      // 1) all threads read 0
      // 2) all threads write concurrently 16 (local block dot product)
    if( threadIdx.x == 0 ) *out += cache[ 0 ];
#endif                

}
""")


def main(args):
    dot = dot_mod.get_function("full_dot")
    N = args.number
    BLOCK_SIZE = 1024
    BLOCKS = int(math.ceil(N/BLOCK_SIZE))
    THREADS_PER_BLOCK = BLOCK_SIZE

    # Time use of pinned host memory:
    x = drv.aligned_empty((N), dtype=np.float64, order='C')
    x = drv.register_host_memory(x, flags=drv.mem_host_register_flags.DEVICEMAP)
    x_gpu_ptr = np.intp(x.base.get_device_pointer())

    # Time use of pinned host memory:
    y = drv.aligned_empty((N), dtype=np.float64, order='C')
    y = drv.register_host_memory(y, flags=drv.mem_host_register_flags.DEVICEMAP)
    y_gpu_ptr = np.intp(y.base.get_device_pointer())

    # Time use of pinned host memory:
    z = drv.aligned_empty((1), dtype=np.float64, order='C')
    z = drv.register_host_memory(z, flags=drv.mem_host_register_flags.DEVICEMAP)
    z_gpu_ptr = np.intp(z.base.get_device_pointer())

    z[:] = np.zeros(1)
    x[:] = np.zeros(N)
    y[:] = np.zeros(N)

    x[:] = np.random.rand(N)
    y[:] = x[:] 
    x_orig = x.copy()
    y_orig = y.copy()

    start = time()
    dot(x_gpu_ptr, y_gpu_ptr, z_gpu_ptr, np.uint32(N), block=(THREADS_PER_BLOCK, 1, 1), grid=(BLOCKS,1))
    times = time()-start
    print "Average kernel GPU dot product execution time with pinned memory:   %3.7f" % np.mean(times)

    start = time()
    ydot=np.dot(x_orig,y_orig)
    times = time()-start
    print "Average numpy dot product execution time:   %3.7f" % np.mean(times)

    print N,ydot,z[0]

if __name__ == "__main__":

    parser = argparse.ArgumentParser(description=' ')
    parser.add_argument('-n', dest='number', type=long, help="Number of samples ", required=True)

    args = parser.parse_args()

    main(args)

我已经编写了这个代码,当样本数组的大小aprox小于1024 * 12时效果很好,但对于像1024 * 1024这样的大数组,会产生错误的结果.-

➜  ./test_dot_pinned.py -n 16384
Average kernel GPU dot product execution time with pinned memory:   0.0001669
Average numpy dot product execution time:   0.0000119
16384 5468.09590706 5468.09590706
 SIZE   np.dot()    GPU-dot-pinned

➜  ./test_dot_pinned.py -n 1048576
Average kernel GPU dot product execution time with pinned memory:   0.0002351
Average numpy dot product execution time:   0.0010922
1048576 349324.532564 258321.148593
 SIZE   np.dot()    GPU-dot-pinned

感谢大家,我希望有人可以帮助我。

答案

内核启动后,pycuda不会强制执行任何同步。通常,如果在内核启动后执行设备 - >主机数据副本,则操作将强制执行同步,即它将强制内核完成。

但是你的代码中没有这样的同步。由于您正在使用固定内存,因为内核执行时间增长(由于更大的工作大小),最终当您打印出z[0]时,您只得到部分结果,因为内核尚未完成。

这样做的副作用是您的内核时间测量不准确。

您可以通过在完成时间测量之前强制内核完成来解决这两个问题:

dot(x_gpu_ptr, y_gpu_ptr, z_gpu_ptr, np.uint32(N), block=(THREADS_PER_BLOCK, 1, 1), grid=(BLOCKS,1))
#add the next line of code:
drv.Context.synchronize()
times = time()-start

以上是关于使用PyCUDA和固定内存的dot产品的主要内容,如果未能解决你的问题,请参考以下文章

如何使用 PyCuda mem_alloc_pitch()

如何在 pyCUDA 内核中生成随机数?

如何使用 Visual Profiler 分析 PyCuda 代码?

如何使用 Visual Profiler 分析 PyCuda 代码?

理解和优化 pyCUDA 中的线程、块和网格

PyCUDA 2D数组实现(或使用字符串)