对“组合者”的好解释(非数学家)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了对“组合者”的好解释(非数学家)相关的知识,希望对你有一定的参考价值。

任何人都对“组合器”(Y-combinators等而不是the company)有一个很好的解释?

我正在寻找一个了解递归和高阶函数的实用程序员,但没有强大的理论或数学背景。

(注意:我说的是these things

答案

除非你深入理论,否则你可以将Y组合器视为一个功能齐全的技巧,比如monad。

Monads允许您链接动作,Y组合器允许您定义自递归函数。

Python内置了对自递归函数的支持,因此您可以在不使用Y的情况下定义它们:

> def fun():
>  print "bla"
>  fun()

> fun()
bla
bla
bla
...

fun可以在fun本身访问,所以我们可以很容易地称之为。

但是,如果Python不同,fun内部无法访问fun怎么办?

> def fun():
>   print "bla"
>   # what to do here? (cannot call fun!)

解决方案是将fun本身作为fun的参数传递:

> def fun(arg): # fun receives itself as argument
>   print "bla"
>   arg(arg) # to recur, fun calls itself, and passes itself along

Y使这成为可能:

> def Y(f):
>   f(f)

> Y(fun)
bla
bla
bla
...

它所做的就是将一个函数称为参数。

(我不知道Y的这个定义是否100%正确,但我认为这是一般的想法。)

另一答案

Reginald Braithwaite(又名Raganwald)在他的新博客homoiconic上撰写了一篇关于Ruby组合器的精彩系列。

虽然他(据我所知)没有看到Y-combinator本身,但他确实看过其他组合器,例如:

以及关于你如何can use他们的一些帖子。

另一答案

引用维基百科:

组合子是一个高阶函数,它只使用函数应用程序和早期定义的组合器来定义其参数的结果。

现在这是什么意思?这意味着组合器是一个函数(输出仅由其输入确定),其输入包括函数作为参数。

这些功能看起来像什么,它们用于什么?这里有些例子:

(f o g)(x) = f(g(x))

这里o是一个组合器,它接收2个函数,fg,并返回一个函数作为其结果,fg的组成,即f o g

组合器可用于隐藏逻辑。假设我们有一个数据类型NumberUndefined,其中NumberUndefined可以采用数值Num x或值Undefined,其中x a是Number。现在我们要为这个新的数字类型构造加法,减法,乘法和除法。语义与Number的语义相同,除非Undefined是输入,输出也必须是Undefined,当除以数字0时,输出也是Undefined

人们可以编写如下繁琐的代码:

Undefined +' num = Undefined
num +' Undefined = Undefined
(Num x) +' (Num y) = Num (x + y)

Undefined -' num = Undefined
num -' Undefined = Undefined
(Num x) -' (Num y) = Num (x - y)

Undefined *' num = Undefined
num *' Undefined = Undefined
(Num x) *' (Num y) = Num (x * y)

Undefined /' num = Undefined
num /' Undefined = Undefined
(Num x) /' (Num y) = if y == 0 then Undefined else Num (x / y)

注意所有关于Undefined输入值的逻辑如何。只有分工才能做得更多。解决方案是通过使其成为组合器来提取逻辑。

comb (~) Undefined num = Undefined
comb (~) num Undefined = Undefined
comb (~) (Num x) (Num y) = Num (x ~ y)

x +' y = comb (+) x y
x -' y = comb (-) x y
x *' y = comb (*) x y
x /' y = if y == Num 0 then Undefined else comb (/) x y

这可以推广到所谓的Maybe monad,程序员可以使用像Haskell这样的函数式语言,但我不会去那里。

另一答案

组合器的功能是没有自由变量。这意味着,除其他外,组合器不依赖于函数外部的事物,仅依赖于函数参数。

使用F#这是我对组合器的理解:

let sum a  b = a + b;; //sum function (lambda)

在上面的例子中,sum是一个组合子,因为ab都与函数参数绑定。

let sum3 a b c = sum((sum a b) c);;

上述函数不是组合子,因为它使用sum,它不是绑定变量(即它不是来自任何参数)。

我们可以通过简单地将sum函数作为参数之一来使sum3成为一个组合器:

let sum3 a b c sumFunc = sumFunc((sumFunc a b) c);;

这样sumFunc被绑定,因此整个函数是组合子。

所以,这是我对组合器的理解。另一方面,它们的重要性仍然让我失望。正如其他人指出的那样,定点组合器允许人们在没有explicit递归的情况下表达递归函数。即而不是调用自身的recusrsive函数调用作为参数之一传入的lambda。

这是我发现的最易理解的组合子派生之一:

http://mvanier.livejournal.com/2897.html

另一答案

这看起来很好:http://www.catonmat.net/blog/derivation-of-ycombinator/

另一答案

我在理论方面很缺乏,但我可以举一个例子来说明我的想象力,这可能对你有所帮助。最简单有趣的组合可能是“测试”。

希望你了解Python

tru = lambda x,y: x
fls = lambda x,y: y 

test = lambda l,m,n: l(m,n)

用法:

>>> test(tru,"goto loop","break")
'goto loop'
>>> test(fls,"goto loop","break")
'break'

如果第一个参数为true,则test测试第二个参数,否则测试第三个参数。

>>> x = tru
>>> test(x,"goto loop","break")
'goto loop'

整个系统可以由几个基本的组合器构建。

(这个例子或多或少地复制了Benjamin C. Pierce的类型和编程语言)

另一答案

这是一个很好的article。代码示例在方案中,但它们不应该很难遵循。

另一答案

简而言之,Y组合子是一个更高阶函数,用于实现lambda表达式(匿名函数)的递归。查看Mike Vanier的文章How to Succeed at Recursion Without Really Recursing - 这是我见过的最好的实际解释之一。

另外,扫描SO档案:

以上是关于对“组合者”的好解释(非数学家)的主要内容,如果未能解决你的问题,请参考以下文章

python使用上下文对代码片段进行计时,非装饰器

解释性

解释性

解释性

C# 最有用的(自定义)代码片段是啥? [关闭]

高效Web开发的10个jQuery代码片段