在浮子上施加(某些情况下)周期性边界条件的有效方法?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了在浮子上施加(某些情况下)周期性边界条件的有效方法?相关的知识,希望对你有一定的参考价值。
通过简单地执行以下操作,可以非常有效地对整数强加一些periodic boundary conditions (PBC)的情况:
myWrappedWithinPeriodicBoundary = myUIntValue & mask
当边界是半开放范围[0,upperBound]时,这是有效的,其中(不包括)upperBound是2 ^ exp,这样
mask = (1 << exp) - 1
例如:
let pbcUpperBoundExp = 2 // so the periodic boundary will be [0, 4)
let mask = (1 << pbcUpperBoundExp) - 1
for x in -7 ... 7 { print(x & mask, terminator: " ") }
(在Swift中)将打印:
1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
问题:是否有任何(大致相似的)有效方法在浮点数(32或64位IEEE-754)上施加(某些情况下)PBC?
有几种合理的方法:
fmod(x,1)
modf(x,&dummy)
- 具有静态知道其除数的优势,但在我的测试中来自libc.so.6
甚至与-ffast-math
x-floor(x)
(Jens在评论中建议) - 直接支持负面输入- 手动bit-twiddling直接实现
- 手动bit-twiddling实现
floor
前两个保留了他们输入的标志;如果它是负数,你可以加1。
两位操作非常相似:您确定哪些有效位对应于整数部分,并将它们(用于直接实现)或其余(用于实现floor
)屏蔽掉。直接实现可以通过浮点除法完成,也可以通过手动重新组装double
来完成;前者即使硬件CLZ快28%。 floor
实现可以立即重建double
:floor
永远不会更改其参数的指数,除非它返回0.大约需要20行C。
以下时间是使用double
和gcc -O3
,时序循环超过代表性输入,其中内联操作代码。
fmod: 41.8 ns
modf: 19.6 ns
floor: 10.6 ns
使用-ffast-math:
fmod: 26.2 ns
modf: 30.0 ns
floor: 21.9 ns
位操作:
direct: 18.0 ns
floor: 20.6 ns
手动实施具有竞争力,但floor
技术是最好的。奇怪的是,三个库函数中的两个在没有-ffast-math
的情况下表现更好:即作为PLT函数调用而不是内联内置函数。
我将这个答案添加到我自己的问题中,因为它在撰写本文时描述了我找到的最佳解决方案。它在Swift 4.1中(应该直接转换为C)并且已经在各种用例中进行了测试:
extension BinaryFloatingPoint {
/// Returns the value after restricting it to the periodic boundary
/// condition [0, 1).
/// See https://forums.swift.org/t/why-no-fraction-in-floatingpoint/10337
@_transparent
func wrappedToUnitRange() -> Self {
let fract = self - self.rounded(.down)
// Have to clamp to just below 1 because very small negative values
// will otherwise return an out of range result of 1.0.
// Turns out this:
if fract >= 1.0 { return Self(1).nextDown } else { return fract }
// is faster than this:
//return min(fract, Self(1).nextDown)
}
@_transparent
func wrapped(to range: Range<Self>) -> Self {
let measure = range.upperBound - range.lowerBound
let recipMeasure = Self(1) / measure
let scaled = (self - range.lowerBound) * recipMeasure
return scaled.wrappedToUnitRange() * measure + range.lowerBound
}
@_transparent
func wrappedIteratively(to range: Range<Self>) -> Self {
var v = self
let measure = range.upperBound - range.lowerBound
while v >= range.upperBound { v = v - measure }
while v < range.lowerBound { v = v + measure }
return v
}
}
在我的带有2 GHz Intel Core i7的MacBook Pro上,随机(有限)Double值上的一千万(可能是内联)调用wrapped(to range:)
需要0.6秒,这大约是每秒1.66亿次调用(不是多线程)。静态知道或不知道的范围,或具有2的幂等的界限或量度,可以产生一些差异,但不会像人们想象的那样多。
wrappedToUnitRange()
需要大约0.2秒,这意味着我的系统每秒有5亿次呼叫。
鉴于正确的情况,wrappedIteratively(to range:)
和wrappedToUnitRange()
一样快。
通过比较基线测试(没有包装一些值,但仍然使用它来计算例如一个简单的xor校验和)到一个值被包装的相同测试来进行计时。这些之间的时间差是我给包装调用的时间。
我使用了Swift开发工具链2018-02-21,使用-O -whole-module-optimization -static-stdlib -gnone进行编译。并且已经注意使测试相关,即使用不同分布的真实随机输入来防止死代码移除等。一般地编写包装函数,如BinaryFloatingPoint上的这个扩展,结果被优化为等效代码,就好像我有为浮动和双重编写单独的专用版本。
有兴趣看到比我更熟练的人进一步调查(C或Swift或任何其他语言并不重要)。
编辑:对于任何感兴趣的人,这里是simd float2的一些版本:
extension float2 {
@_transparent
func wrappedInUnitRange() -> float2 {
return simd.fract(self)
}
@_transparent
func wrappedToMinusOneToOne() -> float2 {
let scaled = (self + float2(1, 1)) * float2(0.5, 0.5)
let scaledFract = scaled - floor(scaled)
let wrapped = simd_muladd(scaledFract, float2(2, 2), float2(-1, -1))
// Note that we have to make sure the result is not out of bounds, like
// simd fract does:
let oneNextDown = Float(bitPattern:
0b0_01111110_11111111111111111111111)
let oneNextDownFloat2 = float2(oneNextDown, oneNextDown)
return simd.min(wrapped, oneNextDownFloat2)
}
@_transparent
func wrapped(toLowerBound lowerBound: float2,
upperBound: float2) -> float2
{
let measure = upperBound - lowerBound
let recipMeasure = simd_precise_recip(measure)
let scaled = (self - lowerBound) * recipMeasure
let scaledFract = scaled - floor(scaled)
// Note that we have to make sure the result is not out of bounds, like
// simd fract does:
let wrapped = simd_muladd(scaledFract, measure, lowerBound)
let maxX = upperBound.x.nextDown // For some reason, this won't be
let maxY = upperBound.y.nextDown // optimized even when upperBound is
// statically known, and there is no similar simd function available.
let maxValue = float2(maxX, maxY)
return simd.min(wrapped, maxValue)
}
}
我问了一些与simd相关的问题here可能会引起关注。
Aaditi:
从上面的Swift论坛主题可以看出:
// Note that tiny negative values like:
let x: Float = -1e-08
// May produce results outside the [0, 1) range:
let wrapped = x - floor(x)
print(wrapped < 1.0) // false
// which may result in out-of-bounds table accesses
// in common usage, so it's probably better to use:
let correctlyWrapped = simd_fract(x)
print(correctlyWrapped < 1.0) // true
我已经更新了代码来解释这个问题。
以上是关于在浮子上施加(某些情况下)周期性边界条件的有效方法?的主要内容,如果未能解决你的问题,请参考以下文章