在几天之内按日期合并2个Pandas数据帧?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了在几天之内按日期合并2个Pandas数据帧?相关的知识,希望对你有一定的参考价值。

所以,我有两个我创建的pandas数据帧并从在线数据中清除,我试图根据它们的日期合并它们,这些都是按月计算的。但是,第一个数据集的月份是在该月的最后一天,第二个数据集是否基于该月的第一天。

# data1
0    1987-01-01  63.752
1    1987-02-01  64.152
2    1987-03-01  64.488
3    1987-04-01  64.995

# data2
0   1987-01-31  1115.10
1   1987-02-30  1095.63
2   1987-03-30  1036.19
3   1987-04-30  1057.08

如果我每天都有一些缺失的数据,我通常会将它们合并为类似的东西

data3 = pd.merge(left=data1, left_on='Date', right=data2, right_on='Date')

但在这种情况下,它们永远不会匹配,即使它们都是相似的日期。

我将如何“告诉”Pandas根据相隔几天的日期合并数据集,并将每个数据命名为“月 - 年”?我不知道从哪里开始,并会感激任何意见。

答案

IIUC,您想在最近的日期合并吗?这就是merge_asof的用途

如果日期尚未转换为日期时间,请将其转换为如此

data1.date = pd.to_datetime(data1.date)
data2.date = pd.to_datetime(data2.date)

现在完成合并

pd.merge_asof(data1,data2,on='date',direction='nearest')

       date  value_x  value_y
0 1987-01-01   63.752  1115.10
1 1987-02-01   64.152  1036.19
2 1987-03-01   64.488  1057.08
3 1987-04-01   64.995  1057.08
另一答案

如果你的日期列被称为date,你可以沿着这些方向做一些事情:

data1['date'] = pd.to_datetime(data1['date'])
data2['date'] = pd.to_datetime(data2['date'])

data1['month'] = data1['date'].dt.month
data1['year'] = data1['date'].dt.year

data2['month'] = data2['date'].dt.month
data2['year'] = data2['date'].dt.year

哪会导致这样的事情:

>>> data1
        date   value  month  year
0                                
0 1987-01-01  63.752      1  1987
1 1987-02-01  64.152      2  1987
2 1987-03-01  64.488      3  1987
3 1987-04-01  64.995      4  1987
>>> data2
        date    value  month  year
0                                 
0 1987-01-01  1115.10      1  1987
1 1987-01-02  1095.63      1  1987
2 1987-02-01  1036.19      2  1987
3 1987-02-28  1057.08      2  1987

然后,您可以合并月份和年份:

data3=data1.merge(data2, on=['month', 'year'])

以上是关于在几天之内按日期合并2个Pandas数据帧?的主要内容,如果未能解决你的问题,请参考以下文章

Pandas加入(合并?)数据帧,只保留唯一的指标

合并具有非唯一索引的多个熊猫数据集

如何基于多个条件更快地合并 2 个 pandas 数据帧

Python pandas:合并两个没有键的表(将 2 个数据帧与广播所有元素相乘;NxN 数据帧)

合并两个日期字段在两个月内的 pandas DataFrame

如何根据多个条件将 1 个 pandas 数据帧合并或组合到另一个数据帧