python yield用法总结

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python yield用法总结相关的知识,希望对你有一定的参考价值。

从最常见的裴波那切数列说起

斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:

 

清单 1. 简单输出斐波那契數列前 N 个数
 def fab(max): 
    n, a, b = 0, 0, 1 
    while n < max: 
        print b 
        a, b = b, a + b 
        n = n + 1

 

执行 fab(5),我们可以得到如下输出:

 

>>> fab(5) 
 1 
 1 
 2 
 3 
 5

 

 

结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。

 

要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:

 

清单 2. 输出斐波那契數列前 N 个数第二版

 

 def fab(max): 
    n, a, b = 0, 0, 1 
    L = [] 
    while n < max: 
        L.append(b) 
        a, b = b, a + b 
        n = n + 1 
    return L

 

可以使用如下方式打印出 fab 函数返回的 List:

 

>>> for n in fab(5): 
 ...     print n 
 ... 
 1 
 1 
 2 
 3 
 5

 

改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List

 

清单 3. 通过 iterable 对象来迭代

 

会导致生成一个 1000 个元素的 List,而代码:

 

则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。

 

利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:

清单 4. 第三个版本
class Fab(object): 

    def __init__(self, max): 
        self.max = max 
        self.n, self.a, self.b = 0, 0, 1 

    def __iter__(self): 
        return self 

    def next(self): 
        if self.n < self.max: 
            r = self.b 
            self.a, self.b = self.b, self.a + self.b 
            self.n = self.n + 1 
            return r 
        raise StopIteration()

 

Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:

 >>> for n in Fab(5): 
 ...     print n 
 ... 
 1 
 1 
 2 
 3 
 5

 

然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:

清单 5. 使用 yield 的第四版
 def fab(max): 
    n, a, b = 0, 0, 1 
    while n < max: 
        yield b 
        # print b 
        a, b = b, a + b 
        n = n + 1 

 

‘‘‘

第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。

调用第四版的 fab 和第二版的 fab 完全一致:

 >>> for n in fab(5): 
 ...     print n 
 ... 
 1 
 1 
 2 
 3 
 5

 

简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。

也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:

清单 6. 执行流程
 >>> f = fab(5) 
 >>> f.next() 
 1 
 >>> f.next() 
 1 
 >>> f.next() 
 2 
 >>> f.next() 
 3 
 >>> f.next() 
 5 
 >>> f.next() 
 Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
 StopIteration

 

当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。

我们可以得出以下结论:

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。

如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:

清单 7. 使用 isgeneratorfunction 判断
>>> from inspect import isgeneratorfunction 
>>> isgeneratorfunction(fab) 
True

 

要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:

清单 8. 类的定义和类的实例
 >>> import types 
 >>> isinstance(fab, types.GeneratorType) 
 False 
 >>> isinstance(fab(5), types.GeneratorType) 
 True

 

fab 是无法迭代的,而 fab(5) 是可迭代的:

 >>> from collections import Iterable 
 >>> isinstance(fab, Iterable) 
 False 
 >>> isinstance(fab(5), Iterable) 
 True

 

每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:

>>> f1 = fab(3) 
 >>> f2 = fab(5) 
 >>> print ‘f1:‘, f1.next() 
 f1: 1 
 >>> print ‘f2:‘, f2.next() 
 f2: 1 
 >>> print ‘f1:‘, f1.next() 
 f1: 1 
 >>> print ‘f2:‘, f2.next() 
 f2: 1 
 >>> print ‘f1:‘, f1.next() 
 f1: 2 
 >>> print ‘f2:‘, f2.next() 
 f2: 2 
 >>> print ‘f2:‘, f2.next() 
 f2: 3 
 >>> print ‘f2:‘, f2.next() 
 f2: 5

 

return 的作用

在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。

 

另一个例子

另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:

清单 9. 另一个 yield 的例子
 def read_file(fpath): 
    BLOCK_SIZE = 1024 
    with open(fpath, ‘rb‘) as f: 
        while True: 
            block = f.read(BLOCK_SIZE) 
            if block: 
                yield block 
            else: 
                return

 

 

还有一个更直观的更容易理解的例子:

 

yield是生成的意思,但是在python中则是作为生成器理解,生成器的用处主要可以迭代,这样简化了很多运算模型(还不是很了解是如何简化的)。

 

yield是一个表达式,是有返回值的.

 

当一个函数中含有yield时,它不再是一个普通的函数,而是一个生成器.当该函数被调用时不会自动执行,而是暂停,见第一个例子:

例1:

>>> def mygenerator():
...     print ‘start...‘
...     yield 5
... 
>>> mygenerator()            //在此处调用,并没有打印出start...说明存在yield的函数没有被运行,即暂停
<generator object mygenerator at 0xb762502c>
>>> mygenerator().next()     //调用next()即可让函数运行.
start...
5
>>> 

如一个函数中出现多个yield则next()会停止在下一个yield前,见例2:

例2:

>>> def fun2():
...     print ‘first‘
...     yield 5
...     print ‘second‘
...     yield 23
...     print ‘end...‘
... 
>>> g1 = fun2()
>>> g1.next()             //第一次运行,暂停在yield 5             
first
5
>>> g1.next()             //第二次运行,暂停在yield 23
second
23
>>> g1.next()             //第三次运行,由于之后没有yield,再次next()就会抛出错误
end...
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration
>>> 

为什么yield 5会输出5,yield 23会输出23?

我们猜测可能是因为yield是表达式,存在返回值.

那么这是否可以认为yield 5的返回值一定是5吗?实际上并不是这样,这个与send函数存在一定的关系,这个函数实质上与next()是相似的,区别是send是传递yield表 达式的值进去,而next不能传递特定的值,只能传递None进去,因此可以认为g.next()和g.send(None)是相同的。见例3:

例3:

>>> def fun():
...     print ‘start...‘
...     m = yield 5
...     print m
...     print ‘middle...‘
...     d = yield 12
...     print d
...     print ‘end...‘
... 
>>> m = fun()              //创建一个对象
>>> m.next()               //会使函数执行到下一个yield前
start...
5
>>> m.send(‘message‘)      //利用send()传递值
message                    //send()传递进来的 
middle...
12
>>> m.next()
None                       //可见next()返回值为空
end...
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

 

 

至此还没有说yield在这种语句“m = yield 5”的用法,下面详细描述

 

1. 包含yield的函数

假如你看到某个函数包含了yield,这意味着这个函数已经是一个Generator,它的执行会和其他普通的函数有很多不同。比如下面的简单的函数:

def h():
    print ‘To be brave‘
    yield 5

h()

可以看到,调用h()之后,print 语句并没有执行!这就是yield,那么,如何让print 语句执行呢?这就是后面要讨论的问题,通过后面的讨论和学习,就会明白yield的工作原理了。

2. yield是一个表达式

Python2.5以前,yield是一个语句,但现在2.5中,yield是一个表达式(Expression),比如:

m = yield 5

表达式(yield 5)的返回值将赋值给m,所以,认为 m = 5 是错误的。那么如何获取(yield 5)的返回值呢?需要用到后面要介绍的send(msg)方法。

3. 透过next()语句看原理

现在,我们来揭晓yield的工作原理。我们知道,我们上面的h()被调用后并没有执行,因为它有yield表达式,因此,我们通过next()语句让它执行。next()语句将恢复Generator执行,并直到下一个yield表达式处。比如:

def h():
    print ‘Wen Chuan‘
    yield 5
    print ‘Fighting!‘

c = h()
c.next()

c.next()调用后,h()开始执行,直到遇到yield 5,因此输出结果:

Wen Chuan
5 #在交互式环境中才会出现5,在文件中运行则没有,一直没有搞清楚是什么原因,如果有知道的请指点。

当我们再次调用c.next()时,会继续执行,直到找到下一个yield表达式。由于后面没有yield了,因此会拋出异常(以下结果也是在交互式环境中运行的):

>>> c.next()
Fighting!
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

4. send(msg) 与 next()

了解了next()如何让包含yield的函数执行后,我们再来看另外一个非常重要的函数 send(msg)。其实next()和send()在一定意义上作用是相似的,区别是send()可以传递yield表达式的值进去,而next()不 能传递特定的值,只能传递None进去。因此,我们可以看做
c.next() 和 c.send(None) 作用是一样的。
来看这个例子:

def h():
    print ‘Wen Chuan‘,
    m = yield 5  # Fighting!
    print m
    d = yield 12
    print ‘We are together!‘

c = h()
c.next()  #相当于c.send(None)
c.send(‘Fighting!‘)  #(yield 5)表达式被赋予了‘Fighting!‘

输出的结果为:
Wen Chuan Fighting!
需要提醒的是,第一次调用时,请使用next()语句或是send(None),不能使用send发送一个非None的值,否则会出错的,因为没有yield语句来接收这个值。

5. send(msg) 与 next()的返回值

send(msg) 和 next()是有返回值的,它们的返回值很特殊,返回的是下一个yield表达式的参数。比如yield 5,则返回 5 。到这里,是不是明白了一些什么东西?本文第一个例子中,通过for i in alist 遍历 Generator,其实是每次都调用了alist.Next(),而每次alist.Next()的返回值正是yield的参数,即我们开始认为被压进 去的东东。我们再延续上面的例子:

def h():
    print ‘Wen Chuan‘,
    m = yield 5  # Fighting!
    print m
    d = yield 12
    print ‘We are together!‘

c = h()
m = c.next()  #m 获取了yield 5 的参数值 5
d = c.send(‘Fighting!‘)  #d 获取了yield 12 的参数值12
print ‘We will never forget the date‘, m, ‘.‘, d

输出结果:
Wen Chuan Fighting!
We will never forget the date 5 . 12

6. throw() 与 close()中断 Generator

中断Generator是一个非常灵活的技巧,可以通过throw抛出一个GeneratorExit异常来终止Generator。Close()方法作用是一样的,其实内部它是调用了throw(GeneratorExit)的。我们看:

def close(self):
    try:
        self.throw(GeneratorExit)
    except (GeneratorExit, StopIteration):
        pass
    else:
        raise RuntimeError("generator ignored GeneratorExit")
# Other exceptions are not caught

因此,当我们调用了close()方法后,再调用next()或是send(msg)的话会抛出一个异常:

Traceback (most recent call last):
  File "/home/evergreen/Codes/yidld.py", line 14, in <module>
    d = c.send(‘Fighting!‘)  #d 获取了yield 12 的参数值12
StopIteration






以上是关于python yield用法总结的主要内容,如果未能解决你的问题,请参考以下文章

Python学习笔记之二浅谈Python的yield用法

Python yield用法浅析(stackoverflow)

yield用法

Python异步编程02--yield用法

python yield的用法

Python yield的用法