poj 1743 Musical Theme(最长重复子串 后缀数组)

Posted mynameispc

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了poj 1743 Musical Theme(最长重复子串 后缀数组)相关的知识,希望对你有一定的参考价值。

poj 1743 Musical Theme(最长重复子串 后缀数组)

有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复的主题。“主题”是整个音符序列的一个子串,它需要满足如下条件:1.长度至少为5个音符。2.在乐曲中重复出现(可能经过转调,“转调”的意思是主题序列中每个音符都被加上或减去了同一个整数值)。3.重复出现的同一主题不能有公共部分。

首先把序列差分一下,那么现在,问题就转换成了:给定一个字符串,求最长重复子串,这两个子串不能重叠。

先来看看最长可重叠重复子串吧。首先,一对极长重复子串必定可以表示为两个后缀的LCP。同时,任意两个后缀的LCP也必定对应一对极长重复子串。它们是满射的关系。因此最长可重叠重复子串的长度相当于任意一对后缀的lcp中最长的,显然就是最大的height。

那这个做法如何推广到最长不可重叠后缀呢?我们可以发现,只有当两个后缀的距离大于它们的lcp时,才能被纳入计算。在这种情况下,我们不能保证height中的最大值一定是答案,有可能最优值的两个后缀之间隔了多个后缀。做法是二分子串长度L,将后缀数组分成若干组,每个组内的height都大于L。记录组内位置最小的,位置最大的串,看看它们之间的距离是否大于子串长度。如果是这样的,那么mid=l+1,否则mid=r。

#include <cstdio> 
#include <cstring>
#include <algorithm>
using namespace std;

const int maxn=4e4+5;
int n, m, a[maxn];

int *x, *y, *t, wa[maxn], wb[maxn], ws[maxn], wv[maxn], sa[maxn], ht[maxn];
int cmp(int *r, int a, int b, int l){
    return r[a]==r[b]&&r[a+l]==r[b+l]; }
void da(int *r){
    x=wa; y=wb; m=maxn;
    for (int i=0; i<m; ++i) ws[i]=0;
    for (int i=0; i<n; ++i) ++ws[x[i]=r[i]];
    for (int i=1; i<m; ++i) ws[i]+=ws[i-1];
    for (int i=0; i<n; ++i) sa[--ws[r[i]]]=i;  //sa数组必须排好序
    int i, j, p=0;
    for (j=1; j<n&&p<n; j<<=1, m=p+1){  //p代表当前倍增情况下有多少不同的后缀 m应当变成p+1
        for (p=0, i=n-j; i<n; ++i) y[p++]=i; 
        for (i=0; i<n; ++i) if (sa[i]>=j) y[p++]=sa[i]-j;
        for (i=0; i<n; ++i) wv[i]=x[y[i]];  //wv:第二关键词中排i的数,在第一关键词中排第几
        for (i=0; i<m; ++i) ws[i]=0;
        for (i=0; i<n; ++i) ++ws[x[i]];  //ws:第一关键词中排名为i的数,总排名的范围是多少 
        for (i=1; i<m; ++i) ws[i]+=ws[i-1];
        for (i=n-1; i>=0; --i) sa[--ws[wv[i]]]=y[i];
        t=x; x=y; y=t; x[sa[0]]=1;
        for (p=1, i=1; i<n; ++i)  //rank必须从1开始以区分空串 
            x[sa[i]]=cmp(y, sa[i-1], sa[i], j)?p:++p;
    }
    memset(ht, 0, sizeof(ht));
    for (i=0; i<n; ++i) --x[i]; p=0;
    for (i=0; i<n; ht[x[i++]]=p){  //枚举原串中1到n的所有后缀 
        if (!x[i]) continue;
        for (p?p--:0, j=sa[x[i]-1]; r[i+p]==r[j+p]&&i+p<n; ++p);  //p表示h[i] 
    }
    return;
}

int main(){
    while (~scanf("%d", &n)&&n){
        for (int i=0; i<n; ++i) scanf("%d", &a[i]);
        for (int i=0; i<n; ++i) a[i]=a[i+1]-a[i]+88; --n;
        da(a); int l=0, r=n, k, flag;
        while (l<r){
            k=(l+r)>>1; flag=0;
            int minm=sa[0], maxm=sa[0];
            for (int i=1; i<=n; ++i){
                if (ht[i]<k){ 
                    if (maxm-minm>k) flag=1;
                    minm=sa[i]; maxm=sa[i]; continue; 
                }
                minm=min(minm, sa[i]);
                maxm=max(maxm, sa[i]);
            }
            if (flag) l=k+1; else r=k;
        }
        printf("%d
", l<5?0:l);
    }
    return 0;
}

以上是关于poj 1743 Musical Theme(最长重复子串 后缀数组)的主要内容,如果未能解决你的问题,请参考以下文章

POJ-1743 Musical Theme(最长不可重叠子串,后缀数组+二分)

poj 1743 Musical Theme(最长重复子串 后缀数组)

poj 1743 Musical Theme

POJ-1743 Musical Theme 字符串问题 不重叠最长重复子串

[POJ1743]Musical Theme

POJ1743:Musical Theme