GridSearchCV上的自定义评分,具有折叠相关参数

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了GridSearchCV上的自定义评分,具有折叠相关参数相关的知识,希望对你有一定的参考价值。

The problem

我正在研究一个学习排名问题,其中规范是评估点预测,但是组评估模型性能。

更具体地说,估计器输出一个连续变量(很像一个回归量)

> y = est.predict(X); y
array([71.42857143,  0.        , 71.42857143, ...,  0.        ,
       28.57142857,  0.        ])

但评分函数需要通过查询进行聚合,即分组预测,类似于发送到groupsGridSearchCV参数以尊重折叠分区。

> ltr_score(y_true, y_pred, groups=g)
0.023

The roadblock

到现在为止还挺好。当向GridSearchCV提供自定义评分函数时,事情向南,我不能根据CV折叠动态改变评分函数中的groups参数:

from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer

ltr_scorer = make_scorer(ltr_score, groups=g)  # Here's the problem, g is fixed
param_grid = {...}

gcv = GridSearchCV(estimator=est, groups=g, param_grid=param_grid, scoring=ltr_scorer)

解决这个问题最不容易的方法是什么?

One (failed) approach

similar question,一条评论问/建议:

为什么你不能在本地存储{分组列}并在必要时通过使用分离器提供的列车测试索引进行索引来利用它?

OP回答“似乎可行”。我认为这也是可行的,但无法使其发挥作用。显然,GridSearchCV将首先使用所有交叉验证拆分索引,然后才执行拆分,拟合,预测和scorings。这意味着我不能(似乎)尝试猜测创建当前拆分子选择的原始索引的得分时间。

为了完整起见,我的代码:

class QuerySplitScorer:
    def __init__(self, X, y, groups):
        self._X = np.array(X)
        self._y = np.array(y)
        self._groups = np.array(groups)
        self._splits = None
        self._current_split = None

    def __iter__(self):
        self._splits = iter(GroupShuffleSplit().split(self._X, self._y, self._groups))
        return self

    def __next__(self):
        self._current_split = next(self._splits)
        return self._current_split

    def get_scorer(self):
        def scorer(y_true, y_pred):
            _, test_idx = self._current_split
            return _score(
                y_true=y_true,
                y_pred=y_pred,
                groups=self._groups[test_idx]
            )

用法:

qss = QuerySplitScorer(X, y_true, g)
gcv = GridSearchCV(estimator=est, cv=qss, scoring=qss.get_scorer(), param_grid=param_grid, verbose=1)
gcv.fit(X, y_true)

它不起作用,self._current_split固定在最后生成的分割。

答案

据我所知,得分值是对(值,组),但估算器不应与组一起使用。让它们在包装中切割,但留给记分员。

简单的估算器包装(可能需要一些抛光才能完全符合)

from sklearn.base import BaseEstimator, ClassifierMixin, TransformerMixin, clone
from sklearn.linear_model import LogisticRegression
from sklearn.utils.estimator_checks import check_estimator
#from sklearn.utils.validation import check_X_y, check_array, check_is_fitted
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import make_scorer

class CutEstimator(BaseEstimator):

    def __init__(self, base_estimator):
        self.base_estimator = base_estimator

    def fit(self, X, y):
        self._base_estimator = clone(self.base_estimator)
        self._base_estimator.fit(X,y[:,0].ravel())
        return self

    def predict(self, X):
        return  self._base_estimator.predict(X)

#check_estimator(CutEstimator(LogisticRegression()))

然后我们可以使用它

def my_score(y, y_pred):

    return np.sum(y[:,1])


pagam_grid = {'base_estimator__C':[0.2,0.5]}

X=np.random.randn(30,3)
y=np.random.randint(3,size=(X.shape[0],1))
g=np.ones_like(y)

gs = GridSearchCV(CutEstimator(LogisticRegression()),pagam_grid,cv=3,
             scoring=make_scorer(my_score), return_train_score=True
            ).fit(X,np.hstack((y,g)))

print (gs.cv_results_['mean_test_score']) #10 as 30/3
print (gs.cv_results_['mean_train_score']) # 20 as 30 -30/3

输出:

 [ 10.  10.]
 [ 20.  20.]

更新1:黑客的方式,但估算器没有变化:

pagam_grid = {'C':[0.2,0.5]}
X=np.random.randn(30,3)
y=np.random.randint(3,size=(X.shape[0]))
g=np.random.randint(3,size=(X.shape[0]))
cv = GroupShuffleSplit (3,random_state=100)
groups_info = {}
for a,b in cv.split(X, y, g):
    groups_info[hash(y[b].tobytes())] =g[b]
    groups_info[hash(y[a].tobytes())] =g[a]

def my_score(y, y_pred):
    global groups_info
    g = groups_info[hash(y.tobytes())]
    return np.sum(g)

gs = GridSearchCV(LogisticRegression(),pagam_grid,cv=cv, 
             scoring=make_scorer(my_score), return_train_score=True,
            ).fit(X,y,groups = g)
print (gs.cv_results_['mean_test_score']) 
print (gs.cv_results_['mean_train_score']) 

以上是关于GridSearchCV上的自定义评分,具有折叠相关参数的主要内容,如果未能解决你的问题,请参考以下文章

网格搜索分类的自定义评分功能

如何在 GridSearchCV 中输入预定义的 k 折叠

在 GridSearchCV 和 RandomizedSearchCV 中获取单个模型和自定义分数 [重复]

DecisionTreeClassifier 上的 GridSearchCV

scikit 学习。 GridSearchCV 管道中的自定义 Transformer set_params 逻辑。

具有自定义大小的评分栏