使用MATLAB的GPU功能计算sum(a。* exp(b。* c),1)的有效方法

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用MATLAB的GPU功能计算sum(a。* exp(b。* c),1)的有效方法相关的知识,希望对你有一定的参考价值。

[我有GPU加速的MATLAB代码,它花费了80%-90%的时间用于计算

sum(a.*exp(b.*c),1)

其中

size(a) = [n 1]
size(b) = [n 1]
size(c) = [1 m]

n可以选择为任意大(在内存限制内)

5000 <m <20000

我想不仅仅使用gpuArrays(大约20倍)来加快速度。

基准测试

使用MATLAB 2018b和NVIDIA P100 GPU,我运行了以下脚本,旨在找到n的最佳大小。它表明,使用双精度技术,与CPU(双插槽Intel Xeon E5-2650v2)相比,我实现了20倍的加速。我是否可以通过做一些更高级的事情(例如使用GPU编码器,甚至是共享内存或纹理内存,如下所述)来改进它?https://uk.mathworks.com/help/parallel-computing/examples/accessing-advanced-cuda-features-using-mex.html

%% Optimisation MWE

nVec = 1000:1000:600000; % Vector of candidate n values
m = 5000;

f1 = figure(1);
ax(1) = subplot(3,1,1);
ax(2) = subplot(3,1,2);
ax(3) = subplot(3,1,3);

% Preallocate time outputs
t = nan(length(nVec),3);
speedupGPU = nan(length(nVec),2);

% Loop over candidate n values
for n = 1:length(nVec)

    %% CPU code
    a = rand(nVec(n),1);
    b = rand(nVec(n),1);
    c = rand(1,m);

    f1 = @() sum(a.*exp(b.*c),1);

    t(n,1) = timeit(f1,1);

    %% GPU code (double precision)
    a = gpuArray(a);
    b = gpuArray(b);
    c = gpuArray(c);

    f2 = @() sum(a.*exp(b.*c),1);

    t(n,2) = gputimeit(f2);

    %% GPU code (single precision)
    a = single(a);
    b = single(b);
    c = single(c);

    f3 = @() sum(a.*exp(b.*c),1);

    t(n,3) = gputimeit(f3);

    %% Calculate speedup
    speedupGPU(n,1) = t(n,1)/t(n,2);
    speedupGPU(n,2) = t(n,1)/t(n,3);

    %% Plot
    plot(ax(1),nVec,t,'.-')             % Plot compute time
    plot(ax(2),nVec,t./nVec(:),'.-')    % Plot normalised compute time
    plot(ax(3),nVec,speedupGPU,'.-')    % Plot Speedup

    %% Label plots
    xlabel(ax(1),'n')
    ylabel(ax(1),'Time')
    legend(ax(1),'CPU','GPU double','GPU single')

    xlabel(ax(2),'n')
    ylabel(ax(2),'Normalised Time')
    legend(ax(2),'CPU','GPU double','GPU single')

    xlabel(ax(3),'n')
    ylabel(ax(3),'Speedup')
    legend(ax(3),'CPU/GPU double','CPU/GPU single')

    drawnow

end

这将导致下图(顶部:执行时间随n的增加(越小越好),中:通过n标准化的执行时间(越小越好),底部:相对于CPU的加速(越大越好)):

Execution time, normalised execution time, and speedup over various **n**

答案

[我意识到这可能无法为您提供所需的加速,但是使此代码更高效的一种方法是通过使用矩阵乘法来摆脱sum

sum(a.*exp(b.*c),1) --> a.'*exp(b.*c)

在我的系统上,这导致加速从〜10增加到〜15。

以上是关于使用MATLAB的GPU功能计算sum(a。* exp(b。* c),1)的有效方法的主要内容,如果未能解决你的问题,请参考以下文章

matlab中关于10e-10的问题

matlab中如何使用多GPU并行计算?

7.数据分析 --在MATLAB中通过Nvidia GeForce GPU加速深度学习计算

(Matlab)GPU计算及CPU计算能力的比较

(Matlab)GPU计算所需的配置

matlab 如何求一个矩阵所有元素的绝对值的和