闪亮的地图上的散点图

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了闪亮的地图上的散点图相关的知识,希望对你有一定的参考价值。

我如何在地图上绘制散点图?我设法绘制了散点图,但是我希望将其绘制在地图上。我相信一种选择是使用传单包,因为我具有经度和纬度坐标,但是我不知道如何使用它。请,如果您有其他选择,请随时。您能帮我解决这个问题吗?可执行代码如下。

非常感谢!

library(shiny)
library(ggplot2)
library(rdist)
library(geosphere)
library(kableExtra)
library(readxl)
library(tidyverse)
library(DT)

#database
df<-structure(list(Properties = c(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35), Latitude = c(-23.8, -23.8, -23.9, -23.9, -23.9,  -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, -23.9, 
                                                                                                                                                 + -23.9, -23.9, -23.9, -23.9, -23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9,-23.9), Longitude = c(-49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.6, -49.7, 
                                                                                                                                                                                                                                                                                                     + -49.7, -49.7, -49.7, -49.7, -49.6, -49.6, -49.6, -49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6,-49.6), Waste = c(526, 350, 526, 469, 285, 175, 175, 350, 350, 175, 350, 175, 175, 364, 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          + 175, 175, 350, 45.5, 54.6,350,350,350,350,350,350,350,350,350,350,350,350,350,350,350,350)), class = "data.frame", row.names = c(NA, -35L))

function.clustering<-function(df,k,Filter1,Filter2){

  if (Filter1==2){
    Q1<-matrix(quantile(df$Waste, probs = 0.25)) 
    Q3<-matrix(quantile(df$Waste, probs = 0.75))
    L<-Q1-1.5*(Q3-Q1)
    S<-Q3+1.5*(Q3-Q1)
    df_1<-subset(df,Waste>L[1]) 
    df<-subset(df_1,Waste<S[1])
  }

  #cluster
  coordinates<-df[c("Latitude","Longitude")]
  d<-as.dist(distm(coordinates[,2:1]))
  fit.average<-hclust(d,method="average") 


  #Number of clusters
  clusters<-cutree(fit.average, k) 
  nclusters<-matrix(table(clusters))  
  df$cluster <- clusters 

  #Localization
  center_mass<-matrix(nrow=k,ncol=2)
  for(i in 1:k){
    center_mass[i,]<-c(weighted.mean(subset(df,cluster==i)$Latitude,subset(df,cluster==i)$Waste),
                       weighted.mean(subset(df,cluster==i)$Longitude,subset(df,cluster==i)$Waste))}
  coordinates$cluster<-clusters 
  center_mass<-cbind(center_mass,matrix(c(1:k),ncol=1)) 

  #Coverage
  coverage<-matrix(nrow=k,ncol=1)
  for(i in 1:k){
    aux_dist<-distm(rbind(subset(coordinates,cluster==i),center_mass[i,])[,2:1])
    coverage[i,]<-max(aux_dist[nclusters[i,1]+1,])}
  coverage<-cbind(coverage,matrix(c(1:k),ncol=1))
  colnames(coverage)<-c("Coverage_meters","cluster")

  #Sum of Waste from clusters
  sum_waste<-matrix(nrow=k,ncol=1)
  for(i in 1:k){
    sum_waste[i,]<-sum(subset(df,cluster==i)["Waste"])
  }
  sum_waste<-cbind(sum_waste,matrix(c(1:k),ncol=1))
  colnames(sum_waste)<-c("Potential_Waste_m3","cluster")

  #Output table
  data_table <- Reduce(merge, list(df, coverage, sum_waste))
  data_table <- data_table[order(data_table$cluster, as.numeric(data_table$Properties)),]
  data_table_1 <- aggregate(. ~ cluster + Coverage_meters + Potential_Waste_m3, data_table[,c(1,7,6,2)], toString)

  #Scatter Plot
  suppressPackageStartupMessages(library(ggplot2))
  df1<-as.data.frame(center_mass)
  colnames(df1) <-c("Latitude", "Longitude", "cluster")
  g<-ggplot(data=df,  aes(x=Longitude, y=Latitude,  color=factor(clusters))) + geom_point(aes(x=Longitude, y=Latitude), size = 4)
  Centro_View<- g +  geom_text(data=df, mapping=aes(x=eval(Longitude), y=eval(Latitude), label=Waste), size=3, hjust=-0.1)+ geom_point(data=df1, mapping=aes(Longitude, Latitude), color= "green", size=4) + geom_text(data=df1, mapping = aes(x=Longitude, y=Latitude, label = 1:k), color = "black", size = 4)
  plotGD<-print(Centro_View + ggtitle("Scatter Plot") + theme(plot.title = element_text(hjust = 0.5)))

  return(list(
    "Data" = data_table_1,
    "Plot" = plotGD
  ))
}

ui <- bootstrapPage(
  navbarPage(theme = shinytheme("flatly"), collapsible = TRUE,
             "Clustering", 

             tabPanel("General Solution",

                      sidebarLayout(
                        sidebarPanel(
                          radioButtons("filtro1", h3("Select properties"),
                                       choices = list("All properties" = 1, 
                                                      "Exclude properties" = 2),
                                       selected = 1),

                          tags$b(h5("(a) Choose other filters")),
                          tags$b(h5("(b) Choose clusters")),  
                          sliderInput("Slider", h5(""),
                                      min = 2, max = 8, value = 5)
                      ),

                        mainPanel(
                          tabsetPanel(      
                            tabPanel("Solution", plotOutput("ScatterPlot"))))

                      ))))


server <- function(input, output, session) {

  Modelclustering<-reactive(function.clustering(df,input$Slider,1,1))

  output$ScatterPlot <- renderPlot({
    Modelclustering()[[2]]
  })

  observeEvent(input$Slider,{
    updateSelectInput(session,'select',
                      choices=unique(df[df==input$Slider]))
  }) 


}

shinyApp(ui = ui, server = server)

非常感谢!

答案

我认为可以帮助您的几件事。

library(shiny)
library(ggplot2)

useri <- shinyUI(pageWithSidebar(
headerPanel("Reactive Plot"),
sidebarPanel(
selectInput('x','X-Axis',names(iris)),
selectInput('y','Y-Axis',names(iris)),
selectInput('color','Color',c('None',names(iris[5])))),
mainPanel(uiOutput("plotui"),dataTableOutput("plot_brushed_points"))))

serveri <- shinyServer(function(input,output) {
output$plot <- renderPlot({
p <- ggplot(iris,aes_string(x=input$x, y=input$y))+geom_point()+theme_bw()
if(input$color != 'None')
  p <- p + aes_string(color=input$color)
print(p)
})
output$plotui <- renderUI(plotOutput("plot",brush = brushOpts("plot_brush")))
output$plot_brushed_points <- renderDataTable(brushedPoints(iris,input$plot_brush,input$x,input$y), options=list(searching=FALSE, paging = FALSE))
})

shinyApp(useri, serveri)

enter image description here

也...

library(shiny)
library(shinydashboard)
library(shinyjs)
library(glue)

ui <- dashboardPage(
  dashboardHeader(),
  dashboardSidebar(selectInput("cols", NULL, c(2, 3, 4, 6, 12), 4)),
  dashboardBody(
    useShinyjs(),
    div(
      box(solidHeader = TRUE,
          title = "Box",
          width = 4,
          status = "info",
          sliderInput("sld", "n:", 1, 100, 50),
          plotOutput("plt")
      ), id = "box-parent")
  )) 

server <- function(input, output) {
  observe({
    cols <- req(input$cols)
    runjs(code = glue('var $el = $("#box-parent > :first");',
                      '$el.removeClass(function (index, className) {{',
                      'return (className.match(/(^|s)col-sm-d+/g) || []).join(" ")',
                      '}});',
                      '$el.addClass("col-sm-{cols}");'))
  })

  output$plt <- renderPlot(plot(rnorm(input$sld), rnorm(input$sld)))
}

shinyApp(ui, server)

enter image description here

以上是关于闪亮的地图上的散点图的主要内容,如果未能解决你的问题,请参考以下文章

如何使用 purrr(管道、地图、imaps)将 df 或 tibble 中的两列组合绘制为 R 中的散点图

echarts图表——漏斗图&散点图

二元变量的散点图 (ggplot)

Pyecharts绘制全球流向图

echarts散点图

如果值在边界之外,则边界上的散点图绘制