pytorch(numpy)计算最接近点的像素
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pytorch(numpy)计算最接近点的像素相关的知识,希望对你有一定的参考价值。
我想解决一个复杂的问题。
例如,我有一批2D预测图像(softmax输出,值介于0和1之间),大小为:Batch x H x W
和地面实况Batch x H x W
浅灰色像素是具有值0
的背景,而深灰色像素是具有值1
的前景。我尝试在每个地面实况图像上使用scipy.ndimage.center_of_mass
计算质心坐标。然后我得到每个地面真相的中心位置点C
(红色)。 C点集是Batch x 1
。
现在,对于预测图像中的每个像素A
(黄色),我想得到三个像素B1, B2, B3
(蓝色),它们最接近A
线上的AC
(这里C是地面实况中质量中心的相应位置)。
我用下面的代码得到三个最近的点B1,B2,B3。
def connect(ends, m=3):
d0, d1 = np.abs(np.diff(ends, axis=0))[0]
if d0 > d1:
return np.c_[np.linspace(ends[0, 0], ends[1, 0], m + 1, dtype=np.int32),
np.round(np.linspace(ends[0, 1], ends[1, 1], m + 1))
.astype(np.int32)]
else:
return np.c_[np.round(np.linspace(ends[0, 0], ends[1, 0], m + 1))
.astype(np.int32),
np.linspace(ends[0, 1], ends[1, 1], m + 1, dtype=np.int32)]
所以B点设置是Batch x 3 x H x W
。
然后,我想像这样计算:|Value(A)-Value(B1)|+|Value(A)-Value(B2)|+|Value(A)-Value(B3)|
。结果的大小应该是Batch x H x W
。
是否有任何numpy矢量化技巧可用于更新预测图像中每个像素的值?或者可以使用pytorch函数解决这个问题?我需要找到一种方法来更新整个图像。预测图像是softmax输出。我不能使用for
循环来计算每个单值,因为它将变得不可微分。非常感谢。
正如@Matin所建议的那样,你可以考虑使用Bresenham's algorithm来获得你在AC
线上的积分。
一个简单的PyTorch实现可以如下(直接改编自伪代码here;可以优化):
import torch
def get_points_from_low(x0, y0, x1, y1, num_points=3):
dx = x1 - x0
dy = y1 - y0
xi = torch.sign(dx)
yi = torch.sign(dy)
dy = dy * yi
D = 2 * dy - dx
y = y0
x = x0
points = []
for n in range(num_points):
x = x + xi
is_D_gt_0 = (D > 0).long()
y = y + is_D_gt_0 * yi
D = D + 2 * dy - is_D_gt_0 * 2 * dx
points.append(torch.stack((x, y), dim=-1))
return torch.stack(points, dim=len(x0.shape))
def get_points_from_high(x0, y0, x1, y1, num_points=3):
dx = x1 - x0
dy = y1 - y0
xi = torch.sign(dx)
yi = torch.sign(dy)
dx = dx * xi
D = 2 * dx - dy
y = y0
x = x0
points = []
for n in range(num_points):
y = y + yi
is_D_gt_0 = (D > 0).long()
x = x + is_D_gt_0 * xi
D = D + 2 * dx - is_D_gt_0 * 2 * dy
points.append(torch.stack((x, y), dim=-1))
return torch.stack(points, dim=len(x0.shape))
def get_points_from(x0, y0, x1, y1, num_points=3):
is_dy_lt_dx = (torch.abs(y1 - y0) < torch.abs(x1 - x0)).long()
is_x0_gt_x1 = (x0 > x1).long()
is_y0_gt_y1 = (y0 > y1).long()
sign = 1 - 2 * is_x0_gt_x1
x0_comp, x1_comp, y0_comp, y1_comp = x0 * sign, x1 * sign, y0 * sign, y1 * sign
points_low = get_points_from_low(x0_comp, y0_comp, x1_comp, y1_comp, num_points=num_points)
points_low *= sign.view(-1, 1, 1).expand_as(points_low)
sign = 1 - 2 * is_y0_gt_y1
x0_comp, x1_comp, y0_comp, y1_comp = x0 * sign, x1 * sign, y0 * sign, y1 * sign
points_high = get_points_from_high(x0_comp, y0_comp, x1_comp, y1_comp, num_points=num_points) * sign
points_high *= sign.view(-1, 1, 1).expand_as(points_high)
is_dy_lt_dx = is_dy_lt_dx.view(-1, 1, 1).expand(-1, num_points, 2)
points = points_low * is_dy_lt_dx + points_high * (1 - is_dy_lt_dx)
return points
# Inputs:
# (@todo: extend A to cover all points in maps):
A = torch.LongTensor([[0, 1], [8, 6]])
C = torch.LongTensor([[6, 4], [2, 3]])
num_points = 3
# Getting points between A and C:
# (@todo: what if there's less than `num_points` between A-C?)
Bs = get_points_from(A[:, 0], A[:, 1], C[:, 0], C[:, 1], num_points=num_points)
print(Bs)
# tensor([[[1, 1],
# [2, 2],
# [3, 2]],
# [[7, 6],
# [6, 5],
# [5, 5]]])
获得积分后,您可以使用Value(A)
检索其“值”(Value(B1)
,torch.index_select()
等)(请注意,截至目前,此方法仅接受1D索引,因此您需要解析数据)。所有事情放在一起,这看起来像下面的东西(从形状A
扩展(Batch, 2)
到(Batch, H, W, 2)
留下来锻炼......)
# Inputs:
# (@todo: extend A to cover all points in maps):
A = torch.LongTensor([[0, 1], [8, 6]])
C = torch.LongTensor([[6, 4], [2, 3]])
batch_size = A.shape[0]
num_points = 3
map_size = (9, 9)
map_num_elements = map_size[0] * map_size[1]
map_values = torch.stack((torch.arange(0, map_num_elements).view(*map_size),
torch.arange(0, -map_num_elements, -1).view(*map_size)))
# Getting points between A and C:
# (@todo: what if there's less than `num_points` between A-C?)
Bs = get_points_from(A[:, 0], A[:, 1], C[:, 0], C[:, 1], num_points=num_points)
# Get map values in positions A:
A_unravel = torch.arange(0, batch_size) * map_num_elements
A_unravel = A_unravel + A[:, 0] * map_size[1] + A[:, 1]
values_A = torch.index_select(map_values.view(-1), dim=0, index=A_unravel)
print(values_A)
# tensor([ 1, -4])
# Get map values in positions A:
A_unravel = torch.arange(0, batch_size) * map_num_elements
A_unravel = A_unravel + A[:, 0] * map_size[1] + A[:, 1]
values_A = torch.index_select(map_values.view(-1), dim=0, index=A_unravel)
print(values_A)
# tensor([ 1, -78])
# Get map values in positions B:
Bs_flatten = Bs.view(-1, 2)
Bs_unravel = (torch.arange(0, batch_size)
.unsqueeze(1)
.repeat(1, num_points)
.view(num_points * batch_size) * map_num_elements)
Bs_unravel = Bs_unravel + Bs_flatten[:, 0] * map_size[1] + Bs_flatten[:, 1]
values_B = torch.index_select(map_values.view(-1), dim=0, index=Bs_unravel)
values_B = values_B.view(batch_size, num_points)
print(values_B)
# tensor([[ 10, 20, 29],
# [-69, -59, -50]])
# Compute result:
res = torch.abs(values_A.unsqueeze(-1).expand_as(values_B) - values_B)
print(res)
# tensor([[ 9, 19, 28],
# [ 9, 19, 28]])
res = torch.sum(res, dim=1)
print(res)
# tensor([56, 56])
以上是关于pytorch(numpy)计算最接近点的像素的主要内容,如果未能解决你的问题,请参考以下文章
python编写自定义函数计算一维numpy数组中与指定目标数值最接近(距离最近)的数值(find closest value in numpy array to a certain value)
NNDL 作业3:分别使用numpy和pytorch实现FNN例题