用scipy在其他点的截止距离内找到点

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了用scipy在其他点的截止距离内找到点相关的知识,希望对你有一定的参考价值。

假设我有两组要点:

>>> points1.shape
(10000, 3)
>>> points2.shape
(1529, 3)

我想在points1的一个点的欧几里德距离cutoff内列出points2指数。我可以很容易地使用scipy.spatial.distance.cdist这样做:

from scipy.spatial.distance import cdist
import numpy

indices = numpy.argwhere(cdist(points1, points2).min(axis=0) < cutoff)

然而,这似乎效率低下,因为我不需要知道彼此之间有多远,只要它们是否在一个截止距离内。 KDTree可以帮助解决这个问题吗?

答案

这里有3个替代品,一个使用cdist,两个使用scipy.spatial.cKDTree

import itertools as IT
import numpy as np
import scipy.spatial as spatial
import scipy.spatial.distance as dist
np.random.seed(2016)
points1 = np.random.randint(100, size=(10**5, 3))
points2 = np.random.randint(100, size=(1529, 3))
cutoff = 5

def using_cdist(points1, points2, cutoff):
    indices = np.where(dist.cdist(points1, points2) <= cutoff)[0]
    indices = np.unique(indices)
    return indices

def using_kdtree(points1, points2, cutoff):
    # build the KDTree using the *smaller* points array
    tree = spatial.cKDTree(points2)
    groups = tree.query_ball_point(points1, cutoff)
    indices = np.unique([i for i, grp in enumerate(groups) if len(grp)])
    return indices

def using_kdtree2(points1, points2, cutoff):
    # build the KDTree using the *larger* points array
    tree = spatial.cKDTree(points1)
    groups = tree.query_ball_point(points2, cutoff)
    indices = np.unique(IT.chain.from_iterable(groups))
    return indices

cdist_result = using_cdist(points1, points2, cutoff)
kdtree_result = using_kdtree(points1, points2, cutoff)
kdtree_result2 = using_kdtree2(points1, points2, cutoff)
assert np.allclose(cdist_result, kdtree_result)
assert np.allclose(cdist_result, kdtree_result2)

在这3个替代品中,using_kdtree2是最快的:

In [80]: %timeit using_kdtree3(points1, points2, cutoff)
10 loops, best of 3: 92.4 ms per loop

In [103]: %timeit using_kdtree(points1, points2, cutoff)
1 loops, best of 3: 938 ms per loop

In [104]: %timeit using_cdist(points1, points2, cutoff)
1 loops, best of 3: 1.51 s per loop

我对最快速度的直觉证明是完全错误的。我认为使用较小的点数组构建KDTree会是最快的。即使使用较大的点数组构建KDTree有点慢,在较小的点数组上调用tree.query_ball_point要快得多:

In [68]: %timeit tree = spatial.cKDTree(points2)
1000 loops, best of 3: 312 µs per loop

In [69]: %timeit tree = spatial.cKDTree(points1)
10 loops, best of 3: 45.7 ms per loop

In [66]: %timeit tree = spatial.cKDTree(points2); groups = tree.query_ball_point(points1, cutoff)
1 loops, best of 3: 933 ms per loop

In [67]: %timeit tree = spatial.cKDTree(points1); groups = tree.query_ball_point(points2, cutoff)
10 loops, best of 3: 89.3 ms per loop

请注意,使用时存在一些问题

def orig(points1, points2, cutoff):
    return np.argwhere(dist.cdist(points1, points2).min(axis=0) < cutoff)

首先,通过调用min(axis=0),如果points1中的两个点都在cutoff中的一个点的points2内,则会丢失信息。您只能得到最近点的索引。另一个问题是,通过在0轴上调用min,剩下的只是与points2相关的1轴。所以orig将指数归还给points2,而不是points1

另一答案

一些想法(?):

  • 如果您不需要知道距离,则可以通过比较距离的平方与阈值的平方(cdist将计算平方根)来保存平方根的计算。
  • 排除x坐标已经超过阈值的点的第一遍,然后与y和z相同,将节省一些计算。特别是因为'或'在Python中是懒惰的(如果x已经足够远,它甚至不会检查y)。

以上是关于用scipy在其他点的截止距离内找到点的主要内容,如果未能解决你的问题,请参考以下文章

关于货仓选址问题的方法及证明(在数轴上找一点使得该点到所有其他点的距离之和最小)

Mongoose Geo Near Search - 如何在给定距离内排序?

查找地理点的聚类(距离聚类中心 y 距离内的最小 x 点)的算法

Dijkstra算法求单源最短路

在 Python 中使用 osmnx 到距离内边缘的最近点

二维凸包