@KafkaListener每次都从头开始阅读
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了@KafkaListener每次都从头开始阅读相关的知识,希望对你有一定的参考价值。
我使用以下示例来使用spring Kafka使用者来阅读消息。我的用例要求每次生成消息时,监听器每次都从头开始读取。
@KafkaListener(
id = "grouplistener",
topicPartitions = {
@TopicPartition(
topic = "mycompactedtopic", partitionOffsets = @PartitionOffset(partition = "0", initialOffset = "0")
)
}
)
public void onReceiving(
String payload, @Header(KafkaHeaders.OFFSET) Integer offset,
@Header(KafkaHeaders.RECEIVED_PARTITION_ID) int partition,
@Header(KafkaHeaders.RECEIVED_TOPIC) String topic
) {
log.info(
"Processing topic = {}, partition = {}, offset = {}, payload= {}",
topic, partition, offset, payload
);
}
我似乎只能在应用程序启动时从头开始阅读,然后它通常会消耗前面的消息。
有没有办法强迫它每次都开始寻求开始?
使用带有1个分区的压缩主题来保存配置列表。然后需要通过休息终点调用它,它应该显示完整的唯一配置列表
你应该实现这个的方法是使用Kafka Streams和KTable并在你的REST层后面建立interactive queries。不是需要回放自身以获得最新状态的系统的标准消费者。
Kafka Connect框架中已经存在一个示例,它具有配置主题,并且您只能访问GET /connectors/name/config
的最新值,并且只有在重新启动它或扩展到更多实例时,它才会再次消耗所有消息。 Schema Registry也是一个例子,它存储了_schemas
主题中所有模式的内部Hashmap,并具有用于读取,插入和删除的REST API。
实质上,当您获得给定密钥的新配置时,您可以使用全新的“替换”给定密钥的旧值,或者以某种方式将旧值“合并”为新数据。
我认为您应该尝试编写ConsumerSeekAware Listener,并在每次阅读消息时寻求0偏移。听起来像疯狂的解决方法,但它可能会有所帮助。希望对你有帮助 :-)
class Listener implements ConsumerSeekAware {
private final ThreadLocal<ConsumerSeekCallback> seekCallBack = new ThreadLocal<>();
----Override all methods that are needed----
@KafkaListener(...)
public void listen(@Payload String message) {
this.seekCallBack.get().seek(topic, partition, 0);
}
}
}
@ Nimo1981所以这是一个使用普通Java的实现。我不确定它是否符合您的需求。所以基本上我提交0的偏移量,(意思是,即使我从Kafka主题中读到,我也会回到开头的偏移量。)我不确定你是否考虑过这个实现但请告诉我这是不是是你在找什么
省略CommitCountObj。这不是你的需要。所以默认情况下,offsetMap会有这样的下一个偏移记录,
offsetMap.put(new TopicPartition(record.topic(),record.partition()),new OffsetAndMetadata(record.offset()+ 1,“some commit success message”));
但是对于你的用例,我进行了一些修改,当消费者没有重新启动时,它运行良好
offsetMap.put(new TopicPartition(record.topic(),record.partition()),new OffsetAndMetadata(0,“no commit done”));
public class KafkaConsumerClass {
private static final org.apache.log4j.Logger log = org.apache.log4j.Logger.getLogger(KafkaConsumerClass.class);
private CommitCountClass commitCountobj = new CommitCountClass();
public Consumer<String, List<FeedBackConsumerClass>> createConsumer() {
Map<String, Object> consumerProps = new HashMap<String, Object>();
consumerProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:7070,localhost:7072");
consumerProps.put(ConsumerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG, 50000);
consumerProps.put(ConsumerConfig.CLIENT_ID_CONFIG, "first_group-client1");
// consumerProps.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, true);
consumerProps.put(ConsumerConfig.GROUP_ID_CONFIG, "first_group");
// consumerProps.put(ConsumerConfig.INTERCEPTOR_CLASSES_CONFIG, KafkaConsumerInterceptor.class);
consumerProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, JsonDeserializer.class);
consumerProps.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 15000);
consumerProps.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);
consumerProps.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, 1500);
consumerProps.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
return new KafkaConsumer<String, List<FeedBackConsumerClass>>(consumerProps);
}
public void consumeRecord() {
log.info("Coming inside consumer consumer");
ArrayList<String> topicList = new ArrayList<String>();
topicList.add("topic1");
commitCountobj.setCount(0);
Consumer<String, List<FeedBackConsumerClass>> kafkaConsumer = createConsumer();
kafkaConsumer.subscribe(topicList);
log.info("after subscribing");
Map<TopicPartition, OffsetAndMetadata> offsetMap = new HashMap<>();
while (true) {
ConsumerRecords<String, List<FeedBackConsumerClass>> recordList = kafkaConsumer.poll(Long.MAX_VALUE);
// kafkaConsumer.seekToBeginning(kafkaConsumer.assignment());
log.info("Inside while loop:" + recordList);
if (!recordList.isEmpty()) {
recordList.forEach(record -> {
int i = 0;
System.out.println(record.toString());
// we can make the call to the API here
// call the db here or any API and process the record
// then call the code to commit
// since the commit is switched off, it becomes a developers responsibility to do the auto commit
offsetMap.put(new TopicPartition(record.topic(), record.partition()),
new OffsetAndMetadata(0, "no metadata/offset commited"));
// here we are incrementing the offsetMap so that we are making sure we are storing the
// next set of offsets in the map
if (commitCountobj.getCount() % 1000 == 0) {
kafkaConsumer.commitAsync(offsetMap, new OffsetCommitCallback() {
@Override
public void onComplete(Map<TopicPartition, OffsetAndMetadata> offsets,
Exception exception) {
// TODO Auto-generated method stub
if (exception != null) {
// retry it now with a sync
// possibility of error occuring here as well
// so capture the exception and exit the consumer gracefully
kafkaConsumer.commitSync();
log.error(exception.getMessage());
}
}
});
}
commitCountobj.setCount(i++);
});
}
}
}
}
以上是关于@KafkaListener每次都从头开始阅读的主要内容,如果未能解决你的问题,请参考以下文章
AVPlayer SeekToTime 不工作。每次从头开始