如何根据过滤条件添加计数列而不是在dplyr中进行分组?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了如何根据过滤条件添加计数列而不是在dplyr中进行分组?相关的知识,希望对你有一定的参考价值。

以下是我的资产数据的子集

# df1 <- AllAssets %>%
#   filter(country %in% c('Morocco', 'Gabon', 'Tunisia')) %>%
#   group_by(country, named, active) %>%
#   summarize(assets = n())

相当于此数据框:

library(dplyr)
library(tibble)
df1 <- structure(list(country = c("Gabon", "Gabon", "Gabon", "Morocco", 
"Morocco", "Tunisia", "Tunisia", "Tunisia"), named = c(FALSE, 
TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE), active = c(1, 0, 
1, 0, 1, 0, 0, 1), assets = c(8L, 305L, 271L, 254L, 18L, 24L, 
350L, 282L)), class = "data.frame", row.names = c(NA, -8L), .Names = c("country", 
"named", "active", "assets")) %>% as.tibble() %>% group_by(country, named)

# A tibble: 8 x 4
# Groups:   country, named [5]
# country named active assets
# <chr>   <lgl>  <dbl>  <int>
# 1 Gabon   FALSE     1.      8
# 2 Gabon   TRUE      0.    305
# 3 Gabon   TRUE      1.    271
# 4 Morocco TRUE      0.    254
# 5 Morocco TRUE      1.     18
# 6 Tunisia FALSE     0.     24
# 7 Tunisia TRUE      0.    350
# 8 Tunisia TRUE      1.    282

我正在制作一个电子表格,根据不同的变量条件计算一个国家的资产数量。有没有比我在下面写的更简单,更清晰的方式来获得我的输出?

df1 %>%
  mutate(ctry_namedTF_count = sum(assets)) %>% 
  group_by(country) %>% 
  mutate(ctry_count = sum(assets)) %>% 
  filter(named == TRUE, active == 1) %>% 
  select(-(named:active)) %>% 
  rename(named_active = assets, 
         TotalAssets = ctry_count,
         named = ctry_namedTF_count)

# Output:
# A tibble: 3 x 4
# Groups:   country [3]
  country named_active named TotalAssets
  <chr>          <int> <int>       <int>
1 Gabon            271   576         584
2 Morocco           18   272         272
3 Tunisia          282   632         656

我实际上是按照dplyr vignette(Ctrl-F'汇总')中的描述“卷起”我的数据帧,重复调用sum(),并重复添加一个数字,而不仅仅是计算分组情况。但是我所拥有的功能虽然很难阅读,但我想知道是否有更简单的方法或自定义功能更有意义。

例如,dplyr :: add_count非常简单,可用于添加一个列,用于计算一个或多个列中的组案例,

> df1 %>% add_count(country, named)
# A tibble: 8 x 5
# Groups:   country, named [5]
  country named active assets     n
  <chr>   <lgl>  <dbl>  <int> <int>
1 Gabon   FALSE     1.      8     1
2 Gabon   TRUE      0.    305     2
3 Gabon   TRUE      1.    271     2
4 Morocco TRUE      0.    254     2
5 Morocco TRUE      1.     18     2
6 Tunisia FALSE     0.     24     1
7 Tunisia TRUE      0.    350     2
8 Tunisia TRUE      1.    282     2

而且我想知道是否有一些东西可以在这些分组之间加总变量。

这样的功能是否存在于基本R或其他重大包中?像df1 %>% add_aggregate_by_vars_filters(vars = named, filter = 'named == TRUE', sum_var = assets),或类似的清洁和实用的东西?

答案
library(dplyr)

df1 <- structure(list(country = c("Gabon", "Gabon", "Gabon", "Morocco", 
"Morocco", "Tunisia", "Tunisia", "Tunisia"), named = c(FALSE, 
TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, TRUE), active = c(1, 0, 
1, 0, 1, 0, 0, 1), assets = c(8L, 305L, 271L, 254L, 18L, 24L, 
350L, 282L)), class = "data.frame", row.names = c(NA, -8L), .Names = c("country", 
"named", "active", "assets"))

df1 %>%
  group_by(country) %>%
  summarise(named_active = sum(assets[named==TRUE & active==1]),
            named = sum(assets[named==TRUE]),
            TotalAssets = sum(assets[active==1]))

# # A tibble: 3 x 4
#   country named_active named TotalAssets
#   <chr>          <int> <int>       <int>
# 1 Gabon            271   576         279
# 2 Morocco           18   272          18
# 3 Tunisia          282   632         282

以上是关于如何根据过滤条件添加计数列而不是在dplyr中进行分组?的主要内容,如果未能解决你的问题,请参考以下文章

在 Shiny 的反应函数中使用 dplyr 条件过滤器

R(dplyr)中复位的条件运行计数(累计和)

如何在现有表中添加额外的列而不丢失数据

dplyr:根据不同条件分组,然后返回top n

在 dplyr 中按组过滤多个条件的条件 IF

Laravel 5.2 orderBy与ofCount的关系导致SQL错误,因为尝试获取列而不是计数失败