开源深度学习架构Caffe

Posted dylancao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了开源深度学习架构Caffe相关的知识,希望对你有一定的参考价值。

  Caffe 全称为 Convolutional Architecture for Fast Feature Embedding,是一个被广泛使用的开源深度学习框架(在 TensorFlow 出现之前一直是深度学习领域 GitHub star 最多的项目),目前由伯克利视觉学中心(Berkeley Vision and Learning Center,BVLC)进行维护。Caffe 的创始人是加州大学伯克利的 Ph.D.贾扬清,他同时也是TensorFlow的作者之一,曾工作于 MSRA、NEC 和 Google Brain,目前就职于 Facebook FAIR 实验室。Caffe 的主要优势包括如下几点。

  • 容易上手,网络结构都是以配置文件形式定义,不需要用代码设计网络。

  • 训练速度快,能够训练 state-of-the-art 的模型与大规模的数据。

  • 组件模块化,可以方便地拓展到新的模型和学习任务上。

Caffe 的核心概念是 Layer,每一个神经网络的模块都是一个 Layer。Layer 接收输入数据,同时经过内部计算产生输出数据。设计网络结构时,只需要把各个 Layer 拼接在一起构成完整的网络(通过写 protobuf 配置文件定义)。比如卷积的 Layer,它的输入就是图片的全部像素点,内部进行的操作是各种像素值与 Layer 参数的 convolution 操作,最后输出的是所有卷积核 filter 的结果。每一个 Layer 需要定义两种运算,一种是正向(forward)的运算,即从输入数据计算输出结果,也就是模型的预测过程;另一种是反向(backward)的运算,从输出端的 gradient 求解相对于输入的 gradient,即反向传播算法,这部分也就是模型的训练过程。实现新 Layer 时,需要将正向和反向两种计算过程的函数都实现,这部分计算需要用户自己写 C++或者 CUDA (当需要运行在 GPU 时)代码,对普通用户来说还是非常难上手的。正如它的名字 Convolutional Architecture for Fast Feature Embedding 所描述的,Caffe 最开始设计时的目标只针对于图像,没有考虑文本、语音或者时间序列的数据,因此 Caffe 对卷积神经网络的支持非常好,但对时间序列 RNN、LSTM 等支持得不是特别充分。同时,基于 Layer 的模式也对 RNN 不是非常友好,定义 RNN 结构时比较麻烦。在模型结构非常复杂时,可能需要写非常冗长的配置文件才能设计好网络,而且阅读时也比较费力。

  Caffe 的一大优势是拥有大量的训练好的经典模型(AlexNet、VGG、Inception)乃至其他 state-of-the-art (ResNet等)的模型,收藏在它的 Model Zoo (http://github.com/BVLC/ caffe/wiki/Model-Zoo)。因为知名度较高,Caffe 被广泛地应用于前沿的工业界和学术界,许多提供源码的深度学习的论文都是使用 Caffe 来实现其模型的。在计算机视觉领域 Caffe 应用尤其多,可以用来做人脸识别、图片分类、位置检测、目标追踪等。虽然 Caffe 主要是面向学术圈和研究者的,但它的程序运行非常稳定,代码质量比较高,所以也很适合对稳定性要求严格的生产环境,可以算是第一个主流的工业级深度学习框架。因为 Caffe 的底层是基于 C++的,因此可以在各种硬件环境编译并具有良好的移植性,支持 Linux、Mac 和 Windows 系统,也可以编译部署到移动设备系统如 androidios 上。和其他主流深度学习库类似,Caffe 也提供了 Python 语言接口 pycaffe,在接触新任务,设计新网络时可以使用其 Python 接口简化操作。不过,通常用户还是使用 Protobuf 配置文件定义神经网络结构,再使用 command line 进行训练或者预测。Caffe 的配置文件是一个 JSON 类型的 .prototxt 文件,其中使用许多顺序连接的 Layer 来描述神经网络结构。Caffe 的二进制可执行程序会提取这些 .prototxt 文件并按其定义来训练神经网络。理论上,Caffe 的用户可以完全不写代码,只是定义网络结构就可以完成模型训练了。Caffe 完成训练之后,用户可以把模型文件打包制作成简单易用的接口,比如可以封装成 Python 或 MATLAB 的 API 。不过在 .prototxt 文件内部设计网络节构可能会比较受限,没有像 TensorFlow 或者 Keras 那样在 Python 中设计网络结构方便、自由。更重要的是,Caffe 的配置文件不能用编程的方式调整超参数,也没有提供像 Scikit-learn 那样好用的 estimator 可以方便地进行交叉验证、超参数的 Grid Search 等操作。

  Caffe 在 GPU 上训练的性能很好(使用单块 GTX 1080 训练 AlexNet 时一天可以训练上百万张图片),但是目前仅支持单机多 GPU 的训练,没有原生支持分布式的训练。庆幸的是,现在有很多第三方的支持,比如雅虎开源的 CaffeOnSpark,可以借助 Spark 的分布式框架实现 Caffe 的大规模分布式训练。

官方网址:http://caffe.berkeleyvision.org/

GitHub:http://github.com/BVLC/caffe

以上是关于开源深度学习架构Caffe的主要内容,如果未能解决你的问题,请参考以下文章

感悟:微博深度学习平台架构和实践

深度学习框架之Caffe源码解析

重磅Facebook 开源产业级深度学习框架 Caffe2,带来跨平台机器学习工具

工具 | Facebook 开源产业级深度学习框架 Caffe2,带来跨平台机器学习工具

开源产业级深度学习框架 Caffe2

深度学习框架的评估与比较