pyspark,比较数据帧中的两行

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pyspark,比较数据帧中的两行相关的知识,希望对你有一定的参考价值。

我试图将数据帧中的一行与下一行进行比较以查看时间戳的差异。目前的数据如下:

 itemid | eventid | timestamp
 ----------------------------
 134    | 30      | 2016-07-02 12:01:40
 134    | 32      | 2016-07-02 12:21:23
 125    | 30      | 2016-07-02 13:22:56
 125    | 32      | 2016-07-02 13:27:07

我已经尝试将一个函数映射到数据帧上,以便进行这样的比较:(注意:我正在尝试获得差异大于4小时的行)

items = df.limit(10)
          .orderBy('itemid', desc('stamp'))
          .map(lambda x,y: (x.stamp - y.stamp) > 14400).collect()

但是我收到以下错误:

Py4JJavaError: An error occurred while calling 
z:org.apache.spark.api.python.PythonRDD.collectAndServe

我认为这是由于我错误地使用了map功能。帮助使用地图或不同的解决方案将不胜感激。

更新:@ zero323的答案提供了有关我不正确使用映射的信息,但是我使用的系统在2.02之前运行Spark版本并且我正在使用Cassandra中的数据。

我设法用mapPartitions解决它。请参阅下面的答案。

更新(2017/03/27):由于最初标记了这篇文章的答案,我对Spark的理解有了显着改善。我在下面更新了我的答案,以显示我当前的解决方案。

答案

是的,你正在以错误的方式使用map功能。 map当时在一个元素上运作。你可以尝试使用这样的窗口函数:

from pyspark.sql.functions import col, lag
from pyspark.sql.window import Window

df = (
    sc.parallelize([
        (134, 30, "2016-07-02 12:01:40"), (134, 32, "2016-07-02 12:21:23"),
        (125, 30, "2016-07-02 13:22:56"), (125, 32, "2016-07-02 13:27:07"),
    ]).toDF(["itemid", "eventid", "timestamp"])
    .withColumn("timestamp", col("timestamp").cast("timestamp"))
)

w = Window.partitionBy("itemid").orderBy("timestamp")

diff = col("timestamp").cast("long") - lag("timestamp", 1).over(w).cast("long")

df.withColumn("diff", diff)
另一答案

@ShuaiYuan对原始答案的评论是正确的。在过去的一年里,我对Spark的工作原理有了更好的理解,并且实际上重写了我正在为这篇文章工作的程序。

新答案(2017/03/27) 为了完成比较数据帧的两行,我最终使用了RDD。我按键对数据进行分组(在这种情况下是项目ID)并忽略eventid,因为它与此等式无关。然后我将一个lambda函数映射到行上,返回一个键的元组和一个包含事件间隙开始和结束的元组列表,这些元组是从“findGaps”函数派生而来的,该函数迭代链接的值列表(已排序的时间戳)到每个键。一旦完成,我过滤掉没有时间间隔的键,然后flatMapValues将数据返回到更像sql的格式。这是通过以下代码完成的:

# Find time gaps in list of datetimes where firings are longer than given duration.  
def findGaps(dates, duration):
    result = []
    length = len(dates)

    # convert to dates for comparison
    first = toDate(dates[0])
    last = toDate(dates[length - 1])
    for index, item in enumerate(dates):
        if index < length -1 and (dates[index + 1] - item).total_seconds() > duration:
            # build outage tuple and append to list
            # format (start, stop, duration)
            result.append(formatResult(item, dates[index + 1], kind))
    return result

outage_list = outage_join_df.rdd
                            .groupByKey()
                            .map(lambda row: (
                                     row[0],
                                     findGaps(
                                         sorted(list(row[1])), 
                                         limit
                                     )
                                  )
                            )
                            .filter(lambda row: len(row[1]) > 0)
                            .flatMapValues(lambda row: row)
                            .map(lambda row: (
                                 row[0]['itemid'],     # itemid
                                 row[1][0].date(),     # date
                                 row[1][0],            # start
                                 row[1][1],            # stop
                                 row[1][2]             # duration
                            ))
                            .collect()

原始答案(错误) 我设法使用mapPartitions解决它:

def findOutage(items):
    outages = []

    lastStamp = None
    for item in items:
        if lastStamp and (lastStamp - item.stamp).total_seconds() > 14400:
            outages.append({"item": item.itemid, 
                            "start": item.stamp.isoformat(),
                            "stop": lastStamp.isoformat()})
        lastStamp = item.stamp
    return iter(outages)

items = df.limit(10).orderBy('itemid', desc('stamp'))

outages = items.mapPartitions(findOutage).collect()

谢谢大家的帮助!

以上是关于pyspark,比较数据帧中的两行的主要内容,如果未能解决你的问题,请参考以下文章

如何使用 spark.read.jdbc 读取不同 Pyspark 数据帧中的多个文件

比较Fortran中的两行

如何比较同一表中的两行并使用存储过程返回数据作为响应

删除 pyspark 数据帧中的空格

pyspark 数据帧中的完全外连接

使用pyspark计算每行数据帧中的总值