Druid.io系列:数据摄入

Posted lenmom

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Druid.io系列:数据摄入相关的知识,希望对你有一定的参考价值。

1. 概述

Druid的数据摄入主要包括两大类: 
1. 实时输入摄入:包括Pull,Push两种 
- Pull:需要启动一个RealtimeNode节点,通过不同的Firehose摄取不同种类的数据源。 
- Push:需要启动Tranquility或是Kafka索引服务。通过HTTP调用的方式进行数据摄入 
2. 离线数据摄入:可以通过Realtime节点摄入,也可以通过索引节点启动任务摄入

本文演示环节主要基于上一章部署的集群来进行

2. 实时数据摄入

2.1 Pull

由于Realtime Node 没有提供高可用,可伸缩等特性,对于比较重要的场景推荐使用 Tranquility Server or 或是Tranquility Kafka索引服务

2.2 Push

Indexing service在前文已经介绍过了,Tranquility 是一个Scala库,它通过索引服务实现数据实时的摄入。它之所以存在,是因为Indexing service API属于低层面的。Tranquility是对索引服务进行抽象封装, 对使用者屏蔽了 创建任务,处理分区、复制、服务发现和shema rollover等环节。

通过Tranquility 的数据摄入,可以分为两种方式

    • Tranquility Server:发送方可以通过Tranquility Server 提供的HTTP接口,向Druid发送数据。
    • Tranquility Kafka:发送发可以先将数据发送到Kafka,Tranquility Kafka会根据配置从Kafka获取数据,并写到Druid中。

2.2.1 Tranquility Server配置

配置流程如下 
1. 开启Tranquility Server,在数据节点上编辑conf/supervise/data-with-query.conf 文件,将Tranquility Server注释放开

# Uncomment to use Tranquility Server                                                                                                                                                          
!p95 tranquility-server bin/tranquility server -configFile conf/tranquility/server.json 

2. 拷贝quick里面的server.json

[email protected]:~/imply-2.3.8# cp conf-quickstart/tranquility/server.json conf/tranquility/

3. 启动服务

[email protected]:~/imply-2.3.8# bin/supervise -c conf/supervise/data-with-query.conf

启动信息如下:

[Fri Dec  8 15:41:39 2017] Running command[tranquility-server], logging to[/root/imply-2.3.8/var/sv/tranquility-server.log]: bin/tranquility server -configFile conf/tranquility/server.json

4. 发送数据

bin/generate-example-metrics | curl -XPOST -HContent-Type: application/json‘ --data-binary @- http://localhost:8200/v1/post/tutorial-tranquility-server

如果成功会打印出,表名产生了25条数据到druid里

{"result":{"received":25,"sent":25}}

5. 查询数据

[email protected]:~/imply-2.3.8/bin#./plyql -h localhost -p 8082 -q "SELECT server, SUM("count") AS "events", COUNT(*) AS "rows" FROM "tutorial-tranquility-server" GROUP BY server;"

┌──────────────────┬────────┬──────┐
│ server           │ events │ rows │
├──────────────────┼────────┼──────┤
│ www1.example.com │ 11    │
│ www2.example.com │ 54    │
│ www3.example.com │ 72    │
│ www4.example.com │ 52    │
│ www5.example.com │ 77    │
└──────────────────┴────────┴──────┘

6. 重启Tranquility Server:

bin/service –restart tranquility-server

 

2.2.2 Tranquility Kafka配置

配置流程如下 
1. 开启Tranquility Kafka,在数据节点上编辑conf/supervise/data-with-query.conf 文件,将Tranquility Kafka注释放开

# Uncomment to use Tranquility Server                                                                                                                                                          
!p95 tranquility-server bin/tranquility server -configFile conf/tranquility/server.json 

2. 拷贝quick里面的kafka.json

[email protected]:~/imply-2.3.8# cp conf-quickstart/tranquility/kafka.json conf/tranquility/

详细配置可参考:http://druid.io/docs/0.12.1/tutorials/tutorial-kafka.html

3. 在kafa集群中创建topic

[email protected]:/opt/PaaS/Talas/lib/Kafka/bin#./kafka-topics.sh --create --zookeeper native-lufanfeng-2-5-24-138:2181,native-lufanfeng-3-5-24-139:2181,native-lufanfeng-4-5-24-140:2181 --replication-factor 1 --partitions 1 --topic tutorial-tranquility-kafka

4. 启动服务

[email protected]:~/imply-2.3.8# bin/supervise -c conf/supervise/data-with-query.conf

启动信息如下:

[Tue Dec 12 10:43:28 2017] Running command[tranquility-kafka], logging to[/root/imply-2.3.8/var/sv/tranquility-kafka.log]: bin/tranquility kafka -configFile conf/tranquility/kafka.json

5. 使用kafka自带的工具发送数据

[email protected]:/opt/PaaS/Talas/lib/Kafka/bin# ./kafka-console-producer.sh --broker-list native-lufanfeng-2-5-24-138:9092,native-lufanfeng-3-5-24-139:9092,native-lufanfeng-4-5-24-140:9092 --topic tutorial-tranquility-kafka
{"unit": "milliseconds", "http_method": "GET", "value": 107, "timestamp": "2017-12-12T05:55:59Z", "http_code": "200", "page": "/list", "metricType": "request/latency", "server": "www1.example.com"}
{"unit": "milliseconds", "http_method": "GET", "value": 19, "timestamp": "2017-12-12T05:55:59Z", "http_code": "200", "page": "/list", "metricType": "request/latency", "server": "www1.example.com"}
{"unit": "milliseconds", "http_method": "GET", "value": 135, "timestamp": "2017-12-12T05:55:59Z", "http_code": "200", "page": "/list", "metricType": "request/latency", "server": "www5.example.com"}
{"unit": "milliseconds", "http_method": "GET", "value": 103, "timestamp": "2017-12-12T05:55:59Z", "http_code": "200", "page": "/list", "metricType": "request/latency", "server": "www4.example.com"}
{"unit": "milliseconds", "http_method": "GET", "value": 93, "timestamp": "2017-12-12T05:55:59Z", "http_code": "200", "page": "/", "metricType": "request/latency", "server": "www3.example.com"}
{"unit": "milliseconds", "http_method": "GET", "value": 89, "timestamp": "2017-12-12T05:55:59Z", "http_code": "200", "page": "/list", "metricType": "request/latency", "server": "www2.example.com"}
{"unit": "milliseconds", "http_method": "GET", "value": 7, "timestamp": "2017-12-12T05:55:59Z", "http_code": "200", "page": "/", "metricType": "request/latency", "server": "www5.example.com"}
{"unit": "milliseconds", "http_method": "GET", "value": 65, "timestamp": "2017-12-12T05:55:59Z", "http_code": "200", "page": "/", "metricType": "request/latency", "server": "www3.example.com"}

此时观察kafka-server.log的日志会发现类似于如下输出

2017-12-12 06:21:37,241 [KafkaConsumer-CommitThread] INFO  c.m.tranquility.kafka.KafkaConsumer - Flushed {tutorial-tranquility-kafka={receivedCount=0, sentCount=8,droppedCount=8, unparseableCount=0}} pending messages in 0ms and committed offsets in 0ms. 

在datasource中,windowPeriod设置成了P10M,timestamp不在当前时间10M内的数据都会被过滤,由于上面的数据的timestamp和执行时间相差了大概26分钟左右,所以都会被drop调,为了达到演示效果,可以对bin/generate-example-metrics-main 的脚本进行调整。代码如下:

# Copyright 2017 Imply Data, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import json
import random
import sys
from datetime import datetime
from kafka import KafkaProducer
from kafka import KafkaClient

hosts="native-lufanfeng-2-5-24-138:9092,native-lufanfeng-3-5-24-139:9092,native-lufanfeng-4-5-24-140:9092"
# hosts="10.48.253.104:9092"
topic=tutorial-tranquility-kafka

class KafkaSender():

    def __init__(self):
        self.client=KafkaClient(hosts)
        self.producer=KafkaProducer(bootstrap_servers=hosts)
        self.client.ensure_topic_exists(topic)
    def send_messages(self,msg):
        self.producer.send(topic,msg)
        self.producer.r

def main():
  parser = argparse.ArgumentParser(description=Generate example page request latency metrics.)
  parser.add_argument(--count, -c, type=int, default=25, help=Number of events to generate (negative for unlimited))
  args = parser.parse_args()

  count = 0
  sender = KafkaSender()
  while args.count < 0 or count < args.count:
    timestamp = datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%SZ")

    r = random.randint(1, 4)
    if r == 1 or r == 2:
      page = /
    elif r == 3:
      page = /list
    else:
      page = /get/ + str(random.randint(1, 99))

    server = www + str(random.randint(1, 5)) + .example.com

    latency = max(1, random.gauss(80, 40))

    record = json.dumps({
      timestamp: timestamp,
      metricType: request/latency,
      value: int(latency),

      # Additional dimensions
      page: page,
      server: server,
      http_method: GET,
      http_code: 200,
      unit: milliseconds
    })
    sender.send_messages(record)
    print Send:%s Successful! % record
    count += 1

try:
  main()
except KeyboardInterrupt:
  sys.exit(1)

3. 离线数据摄入

3.1 静态文件摄入

使用自带的摄入机制,可以在数据节点摄入本地文件,方法如下:

bin/post-index-task --file quickstart/wikiticker-index.json

wikiticker-index.json 文件中既包括datasource的定义,也包括数据文件位置的配置

3.2 HDFS文件摄入

配置过程可参考:http://druid.io/docs/0.12.1/ingestion/batch-ingestion.html

4. 配置参考

通用配置:https://github.com/druid-io/tranquility/blob/master/docs/configuration.md 
数据摄入通用配置:http://druid.io/docs/latest/ingestion/index.html 
Tranquility Kafka:https://github.com/druid-io/tranquility/blob/master/docs/kafka.md

5. 其他注意事项

5.1 数据分片

Druid的分片基本都是通过配置tunningConfig来配置的,实时,批量配置的方式会存在一定的差异

实时加载包括下面两种类型 
- Linear分片: 
- 添加新节点时,原节点的配置不需要调整 
- 当存在分片时数据也能被查询 
- Numbered分片 
- 所有分片存在时,才能查询 
- 需要制定分片总数

本地文件加载包括下面两种类型 
- 按照Partition大小分片 
- 设置总的分片数

Hadoop文件加载包括下面两种类型 
- 哈希分片 
- 范围分片

5.2 高基数维度优化

对于需要统计维度基数的需求,如果某个维度的基数很大,可能会存在下列问题。维度基数统计主要包括下面两种类型 
- Cardinality: 基于HyperLogLog算法,只在查询阶段做了优化,不能减少存储容量,基数大时,效率可能会有问题 
- HyperUnique: 在摄入阶段进行优化,对于不需要对高基数维度进行过滤,分组的业务场景可以使用该类型

以上是关于Druid.io系列:数据摄入的主要内容,如果未能解决你的问题,请参考以下文章

Druid.io系列:部署

druid.io 自定义实时任务调度策略

实时统计分析系统-Apache Druid

如何使用 Tranquility 核心 API 向 druid 发送数据?

在 druid 中设置基本身份验证

Kibana:摄入 GeoJSON 数据