使用不同方式对具有数字索引的data.table列进行子集化时的结果不同

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用不同方式对具有数字索引的data.table列进行子集化时的结果不同相关的知识,希望对你有一定的参考价值。

看最小的例子:

library(data.table)
DT <- data.table(x = 2, y = 3, z = 4)

DT[, c(1:2)]  # first way
#    x y
# 1: 2 3

DT[, (1:2)]  # second way
# [1] 1 2

DT[, 1:2]  # third way
#    x y
# 1: 2 3

如此post中所述,现在可以使用数字索引对子列进行子集化。但是,我想知道为什么索引以第二种方式而不是列索引来评估向量?

另外,我刚刚更新了data.table

> sessionInfo()
R version 3.4.4 (2018-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.4 LTS

Matrix products: default
BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0
LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8    LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] data.table_1.11.2

loaded via a namespace (and not attached):
[1] compiler_3.4.4 tools_3.4.4    yaml_2.1.17
答案

通过查看source code,我们可以模拟不同输入的data.tables行为

if (!missing(j)) {
    jsub = replace_dot_alias(substitute(j))
    root = if (is.call(jsub)) as.character(jsub[[1L]])[1L] else ""
    if (root == ":" ||
        (root %chin% c("-","!") && is.call(jsub[[2L]]) && jsub[[2L]][[1L]]=="(" && is.call(jsub[[2L]][[2L]]) && jsub[[2L]][[2L]][[1L]]==":") ||
        ( (!length(av<-all.vars(jsub)) || all(substring(av,1L,2L)=="..")) &&
          root %chin% c("","c","paste","paste0","-","!") &&
          missing(by) )) {   # test 763. TODO: likely that !missing(by) iff with==TRUE (so, with can be removed)
      # When no variable names (i.e. symbols) occur in j, scope doesn't matter because there are no symbols to find.
      # If variable names do occur, but they are all prefixed with .., then that means look up in calling scope.
      # Automatically set with=FALSE in this case so that DT[,1], DT[,2:3], DT[,"someCol"] and DT[,c("colB","colD")]
      # work as expected.  As before, a vector will never be returned, but a single column data.table
      # for type consistency with >1 cases. To return a single vector use DT[["someCol"]] or DT[[3]].
      # The root==":" is to allow DT[,colC:colH] even though that contains two variable names.
      # root == "-" or "!" is for tests 1504.11 and 1504.13 (a : with a ! or - modifier root)
      # We don't want to evaluate j at all in making this decision because i) evaluating could itself
      # increment some variable and not intended to be evaluated a 2nd time later on and ii) we don't
      # want decisions like this to depend on the data or vector lengths since that can introduce
      # inconistency reminiscent of drop=TRUE in [.data.frame that we seek to avoid.
      with=FALSE

基本上,"[.data.table"捕获传递给j的表达式,并根据一些预定义的规则决定如何对待它。如果满足其中一个规则,则设置with=FALSE,这基本上意味着使用标准评估将列名称传递给j

规则(大致)如下:

  1. 设置with=FALSE, 1.1。如果j表达式是一个电话,而电话是:或 1.2。如果调用是c("-","!")(:的组合或 1.3。如果一些值(字符,整数,数字等)或..传递给j并且调用是在c("","c","paste","paste0","-","!")并且没有by调用

否则设置with=TRUE

所以我们可以将它转换成一个函数并查看是否满足任何条件(我已经跳过将.转换为list函数,因为它在这里无关紧要。我们将直接用list测试)

is_satisfied <- function(...) {
  jsub <- substitute(...)
  root = if (is.call(jsub)) as.character(jsub[[1L]])[1L] else ""
  if (root == ":" ||
    (root %chin% c("-","!") && 
     is.call(jsub[[2L]]) && 
     jsub[[2L]][[1L]]=="(" && 
     is.call(jsub[[2L]][[2L]]) && 
     jsub[[2L]][[2L]][[1L]]==":") ||
    ( (!length(av<-all.vars(jsub)) || all(substring(av,1L,2L)=="..")) &&
      root %chin% c("","c","paste","paste0","-","!"))) TRUE else FALSE
}

is_satisfied("x")
# [1] TRUE
is_satisfied(c("x", "y"))
# [1] TRUE
is_satisfied(..x)
# [1] TRUE
is_satisfied(1:2)
# [1] TRUE
is_satisfied(c(1:2))
# [1] TRUE
is_satisfied((1:2))
# [1] FALSE
is_satisfied(y)
# [1] FALSE
is_satisfied(list(x, y))
# [1] FALSE

以上是关于使用不同方式对具有数字索引的data.table列进行子集化时的结果不同的主要内容,如果未能解决你的问题,请参考以下文章

附加具有不同列数量和拼写的 csv

data.table按索引重新排序列

在data.table中具有指定变量的引用列

R:使用具有数字位置的重复列名来子集data.table

在雪花中对具有不同大小的移动窗口的数字列求和

将外键上的 SQL 连接转换为 R data.table 语法