使用不同方式对具有数字索引的data.table列进行子集化时的结果不同
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用不同方式对具有数字索引的data.table列进行子集化时的结果不同相关的知识,希望对你有一定的参考价值。
看最小的例子:
library(data.table)
DT <- data.table(x = 2, y = 3, z = 4)
DT[, c(1:2)] # first way
# x y
# 1: 2 3
DT[, (1:2)] # second way
# [1] 1 2
DT[, 1:2] # third way
# x y
# 1: 2 3
如此post中所述,现在可以使用数字索引对子列进行子集化。但是,我想知道为什么索引以第二种方式而不是列索引来评估向量?
另外,我刚刚更新了data.table
:
> sessionInfo()
R version 3.4.4 (2018-03-15)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.4 LTS
Matrix products: default
BLAS: /usr/lib/atlas-base/atlas/libblas.so.3.0
LAPACK: /usr/lib/atlas-base/atlas/liblapack.so.3.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] data.table_1.11.2
loaded via a namespace (and not attached):
[1] compiler_3.4.4 tools_3.4.4 yaml_2.1.17
答案
通过查看source code,我们可以模拟不同输入的data.tables行为
if (!missing(j)) {
jsub = replace_dot_alias(substitute(j))
root = if (is.call(jsub)) as.character(jsub[[1L]])[1L] else ""
if (root == ":" ||
(root %chin% c("-","!") && is.call(jsub[[2L]]) && jsub[[2L]][[1L]]=="(" && is.call(jsub[[2L]][[2L]]) && jsub[[2L]][[2L]][[1L]]==":") ||
( (!length(av<-all.vars(jsub)) || all(substring(av,1L,2L)=="..")) &&
root %chin% c("","c","paste","paste0","-","!") &&
missing(by) )) { # test 763. TODO: likely that !missing(by) iff with==TRUE (so, with can be removed)
# When no variable names (i.e. symbols) occur in j, scope doesn't matter because there are no symbols to find.
# If variable names do occur, but they are all prefixed with .., then that means look up in calling scope.
# Automatically set with=FALSE in this case so that DT[,1], DT[,2:3], DT[,"someCol"] and DT[,c("colB","colD")]
# work as expected. As before, a vector will never be returned, but a single column data.table
# for type consistency with >1 cases. To return a single vector use DT[["someCol"]] or DT[[3]].
# The root==":" is to allow DT[,colC:colH] even though that contains two variable names.
# root == "-" or "!" is for tests 1504.11 and 1504.13 (a : with a ! or - modifier root)
# We don't want to evaluate j at all in making this decision because i) evaluating could itself
# increment some variable and not intended to be evaluated a 2nd time later on and ii) we don't
# want decisions like this to depend on the data or vector lengths since that can introduce
# inconistency reminiscent of drop=TRUE in [.data.frame that we seek to avoid.
with=FALSE
基本上,"[.data.table"
捕获传递给j
的表达式,并根据一些预定义的规则决定如何对待它。如果满足其中一个规则,则设置with=FALSE
,这基本上意味着使用标准评估将列名称传递给j
。
规则(大致)如下:
- 设置
with=FALSE
, 1.1。如果j
表达式是一个电话,而电话是:
或 1.2。如果调用是c("-","!")
和(
和:
的组合或 1.3。如果一些值(字符,整数,数字等)或..
传递给j
并且调用是在c("","c","paste","paste0","-","!")
并且没有by
调用
否则设置with=TRUE
所以我们可以将它转换成一个函数并查看是否满足任何条件(我已经跳过将.
转换为list
函数,因为它在这里无关紧要。我们将直接用list
测试)
is_satisfied <- function(...) {
jsub <- substitute(...)
root = if (is.call(jsub)) as.character(jsub[[1L]])[1L] else ""
if (root == ":" ||
(root %chin% c("-","!") &&
is.call(jsub[[2L]]) &&
jsub[[2L]][[1L]]=="(" &&
is.call(jsub[[2L]][[2L]]) &&
jsub[[2L]][[2L]][[1L]]==":") ||
( (!length(av<-all.vars(jsub)) || all(substring(av,1L,2L)=="..")) &&
root %chin% c("","c","paste","paste0","-","!"))) TRUE else FALSE
}
is_satisfied("x")
# [1] TRUE
is_satisfied(c("x", "y"))
# [1] TRUE
is_satisfied(..x)
# [1] TRUE
is_satisfied(1:2)
# [1] TRUE
is_satisfied(c(1:2))
# [1] TRUE
is_satisfied((1:2))
# [1] FALSE
is_satisfied(y)
# [1] FALSE
is_satisfied(list(x, y))
# [1] FALSE
以上是关于使用不同方式对具有数字索引的data.table列进行子集化时的结果不同的主要内容,如果未能解决你的问题,请参考以下文章