在HDF5文件中创建和访问数据集
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了在HDF5文件中创建和访问数据集相关的知识,希望对你有一定的参考价值。
我正在尝试使用两个数据集“数据”和“标签”创建HDF5文件。但是,当我尝试访问所述文件时,出现如下错误:
Traceback (most recent call last):
File "C:Program FilesJetBrainsPyCharm Community Edition 2018.1.4helperspydevpydevd.py", line 1664, in <module>
main()
File "C:Program FilesJetBrainsPyCharm Community Edition 2018.1.4helperspydevpydevd.py", line 1658, in main
globals = debugger.run(setup['file'], None, None, is_module)
File "C:Program FilesJetBrainsPyCharm Community Edition 2018.1.4helperspydevpydevd.py", line 1068, in run
pydev_imports.execfile(file, globals, locals) # execute the script
File "C:Program FilesJetBrainsPyCharm Community Edition 2018.1.4helperspydev\_pydev_imps\_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"
", file, 'exec'), glob, loc)
File "C:/pycharm/Input_Pipeline.py", line 140, in <module>
data_h5 = f['data'][:]
File "h5py\_objects.pyx", line 54, in h5py._objects.with_phil.wrapper
File "h5py\_objects.pyx", line 55, in h5py._objects.with_phil.wrapper
File "C:Usersu20x47PycharmProjectsPCLvenvlibsite-packagesh5py\_hlgroup.py", line 177, in __getitem__
oid = h5o.open(self.id, self._e(name), lapl=self._lapl)
File "h5py\_objects.pyx", line 54, in h5py._objects.with_phil.wrapper
File "h5py\_objects.pyx", line 55, in h5py._objects.with_phil.wrapper
File "h5pyh5o.pyx", line 190, in h5py.h5o.open
ValueError: Not a location (invalid object ID)
用于创建数据集的代码:
h5_file.create_dataset('data', data=data_x, compression='gzip', compression_opts=4, dtype='float32')
h5_file.create_dataset('label', data=label, compression='gzip', compression_opts=1, dtype='uint8')
data_x an array of arrays. Each element in data_x is a 3D array of 1024 elements.
label is an array of arrays as well. Each element is a 1D array of 1 element.
访问所述文件的代码:
f = h5_file
data_h5 = f['data'][:]
label_h5 = f['label'][:]
print (data_h5, label_h5)
我怎样才能解决这个问题?这是语法错误还是逻辑错误?
答案
我无法重现错误。也许您忘记关闭文件或在执行期间更改h5的内容。
您也可以使用print h5_file.items()
来检查h5文件的内容
经过测试的代码:
import h5py
import numpy as np
h5_file = h5py.File('test.h5', 'w')
# bogus data with the correct size
data_x = np.random.rand(16,8,8)
label = np.random.randint(100, size=(1,1),dtype='uint8')
#
h5_file.create_dataset('data', data=data_x, compression='gzip', compression_opts=4, dtype='float32')
h5_file.create_dataset('label', data=label, compression='gzip', compression_opts=1, dtype='uint8')
h5_file.close()
h5_file = h5py.File('test.h5', 'r')
f = h5_file
print f.items()
data_h5 = f['data'][...]
label_h5 = f['label'][...]
print (data_h5, label_h5)
h5_file.close()
产生
[(u'data', <HDF5 dataset "data": shape (16, 8, 8), type "<f4">), (u'label', <HDF5 dataset "label": shape (1, 1), type "|u1">)]
(array([[[4.36837107e-01, 8.05664659e-01, 3.34415197e-01, ...,
8.89135897e-01, 1.84097692e-01, 3.60782951e-01],
[8.86442482e-01, 6.07181549e-01, 2.42844030e-01, ...,
[4.24369454e-01, 6.04596496e-01, 5.56676507e-01, ...,
7.22884715e-01, 2.45932683e-01, 9.18777227e-01]]], dtype=float32), array([[25]], dtype=uint8))
以上是关于在HDF5文件中创建和访问数据集的主要内容,如果未能解决你的问题,请参考以下文章
如何使用 maven 程序集插件在 tar 中创建和包含 zip 文件
在 Windows Azure 中创建和流式传输复合清单文件