tensorflow2.0中的任何变量均未提供梯度

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tensorflow2.0中的任何变量均未提供梯度相关的知识,希望对你有一定的参考价值。

[当我尝试使用tensorflow2.0根据TensorFlow发布的官方指南创建变压器时遇到了一个问题,当我添加完整的连接网络时,分类损失和平移损失似乎都是梯度。关于一些变量。

但是一旦我尝试将两个损失相加,所有变量的梯度就会消失。我不知道,我尝试了数周来解决这个问题。有人可以给我一些建议吗?

@tf.function(input_signature=train_step_signature)
def train_step(group, inp, tar, label):
    tar_inp = tar[:, :-1]
    tar_real = tar[:, 1:]  # sess=tf.compat.v1.Session()
    enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp)
    with tf.GradientTape(persistent=True) as tape:
        classfication, predictions, _ = transformer(inp, tar_inp,
                                                    True,
                                                    enc_padding_mask,
                                                    combined_mask,
                                                    dec_padding_mask)
        loss = loss_function(tar_real, predictions)
        loss2 = tf.nn.softmax_cross_entropy_with_logits(label, classfication)

    #print(loss,loss2)
    a=tape.gradient(loss,trainsformer.trainable_variable)
    gradients = tape.gradient(loss+loss2, transformer.trainable_variables)

    optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))
    class_loss(loss2)
    train_loss(loss)
    train_accuracy(tar_real, predictions)

下面是我的错误信息

    ValueError                                Traceback (most recent call last)
<ipython-input-2-81054f0385cb> in <module>()
    999     # inp -> portuguese, tar -> english
   1000     for (batch, (group, inp, tar, label)) in enumerate(train_dataset):
-> 1001         train_step(group, inp, tar, label)
   1002         if batch % 50 == 0:
   1003             print(

8 frames
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/def_function.py in __call__(self, *args, **kwds)
    455 
    456     tracing_count = self._get_tracing_count()
--> 457     result = self._call(*args, **kwds)
    458     if tracing_count == self._get_tracing_count():
    459       self._call_counter.called_without_tracing()

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/def_function.py in _call(self, *args, **kwds)
    501       # This is the first call of __call__, so we have to initialize.
    502       initializer_map = object_identity.ObjectIdentityDictionary()
--> 503       self._initialize(args, kwds, add_initializers_to=initializer_map)
    504     finally:
    505       # At this point we know that the initialization is complete (or less

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
    406     self._concrete_stateful_fn = (
    407         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
--> 408             *args, **kwds))
    409 
    410     def invalid_creator_scope(*unused_args, **unused_kwds):

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
   1846     if self.input_signature:
   1847       args, kwargs = None, None
-> 1848     graph_function, _, _ = self._maybe_define_function(args, kwargs)
   1849     return graph_function
   1850 

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py in _maybe_define_function(self, args, kwargs)
   2148         graph_function = self._function_cache.primary.get(cache_key, None)
   2149         if graph_function is None:
-> 2150           graph_function = self._create_graph_function(args, kwargs)
   2151           self._function_cache.primary[cache_key] = graph_function
   2152         return graph_function, args, kwargs

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   2039             arg_names=arg_names,
   2040             override_flat_arg_shapes=override_flat_arg_shapes,
-> 2041             capture_by_value=self._capture_by_value),
   2042         self._function_attributes,
   2043         # Tell the ConcreteFunction to clean up its graph once it goes out of

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
    913                                           converted_func)
    914 
--> 915       func_outputs = python_func(*func_args, **func_kwargs)
    916 
    917       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/def_function.py in wrapped_fn(*args, **kwds)
    356         # __wrapped__ allows AutoGraph to swap in a converted function. We give
    357         # the function a weak reference to itself to avoid a reference cycle.
--> 358         return weak_wrapped_fn().__wrapped__(*args, **kwds)
    359     weak_wrapped_fn = weakref.ref(wrapped_fn)
    360 

/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/func_graph.py in wrapper(*args, **kwargs)
    903           except Exception as e:  # pylint:disable=broad-except
    904             if hasattr(e, "ag_error_metadata"):
--> 905               raise e.ag_error_metadata.to_exception(e)
    906             else:
    907               raise

ValueError: in converted code:

    <ipython-input-1-81054f0385cb>:856 train_step  *
        optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))
    /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/optimizer_v2/optimizer_v2.py:427 apply_gradients
        grads_and_vars = _filter_grads(grads_and_vars)
    /usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/optimizer_v2/optimizer_v2.py:1025 _filter_grads
        ([v.name for _, v in grads_and_vars],))

    ValueError: No gradients provided for any variable: ['transformer_1/encoder_1/embedding_2/embeddings:0', 'transformer_1/encoder_1/encoder_layer_6/multi_head_attention_18/dense_98/kernel:0', 'transformer_1/encoder_1/encoder_layer_6/multi_head_attention_18/dense_98/bias:0', 'transformer_1/encoder_1/encoder_layer_6/multi_head_attention_18/dense_99/kernel:0', 'transformer_1/encoder_1/encoder_layer_6/multi_head_attention_18/dense_99/bias:0', 'transformer_1/encoder_1/encoder_layer_6/multi_head_attention_18/dense_100/kernel:0', 'transformer_1/encoder_1/encoder_layer_6/multi_head_attention_18/dense_100/bias:0', 'transformer_1/encoder_1/encoder_layer_6/multi_head_attention_18/dense_101/kernel:0', 'transformer_1/encoder_1/encoder_layer_6/multi_head_attention_18/dense_101/bias:0', 'transformer_1/encoder_1/encoder_layer_6/sequential_12/dense_102/kernel:0', 'transformer_1/encoder_1/encoder_layer_6/sequential_12/dense_102/bias:0', 'transformer_1/encoder_1/encoder_layer_6/sequential_12/dense_103/kernel:0', 'transformer_1/encoder_1/encoder_layer_6/sequential_12/dense_103/bias:0', 'transformer_1/encoder_1/encoder_layer_6/layer_normalization_30/gamma:0', 'transformer_1/encoder_1/encoder_layer_6/layer_normalization_30/beta:0', 'transformer_1/encoder_1/encoder_layer_6/layer_normalization_31/gamma:0', 'transformer_1/encoder_1/encoder_layer_6/layer_normalization_31/beta:0', 'transformer_1/encoder_1/encoder_layer_7/multi_head_attention_19/dense_104/kernel:0', 'transformer_1/encoder_1/encoder...
答案
是,关于GradientTape,这有点令人讨厌。您不能对磁带上下文(with...)之外的张量进行

anything,否则磁带将“丢失轨道”。您可以通过简单地将添加项移至上下文中来对其进行修复:

with tf.GradientTape(persistent=True) as tape: classfication, predictions, _ = transformer(inp, tar_inp, True, enc_padding_mask, combined_mask, dec_padding_mask) loss = loss_function(tar_real, predictions) loss2 = tf.nn.softmax_cross_entropy_with_logits(label, classfication) added_loss = loss + loss2 #print(loss,loss2) a=tape.gradient(loss,trainsformer.trainable_variable) gradients = tape.gradient(added_loss, transformer.trainable_variables)

以上是关于tensorflow2.0中的任何变量均未提供梯度的主要内容,如果未能解决你的问题,请参考以下文章

简单的 TensorFlow LSTM 网络:ValueError:没有为任何变量提供梯度

《30天吃掉那只 TensorFlow2.0》 2-3 自动微分机制

Android | TensorFlow2.0 入门1

Android | TensorFlow2.0 入门1

Android | TensorFlow2.0 入门1

Tensorflow ValueError:没有为任何变量提供梯度