由于numpy形状张量流,keras无法训练模型
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了由于numpy形状张量流,keras无法训练模型相关的知识,希望对你有一定的参考价值。
我是新手,我正在尝试用Keras训练我的模型。我有14节课。
以下是我的训练和测试数据的形状:
print('train data shape:', X_train.shape)
print('one hot shape:', y_train.shape)
print('one hot shape:', y_test.shape)
print('Number of images in x_train', x_train.shape[0])
print('Number of images in x_test', x_test.shape[0])
输出:
train data shape: (77623, 28, 28, 1)
one hot shape: (77623, 14, 14)
one hot shape: (500, 14, 14)
Number of images in x_train 77623
Number of images in x_test 500
这是我的模型:
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(14, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
print(model.summary())
型号摘要:
Layer (type) Output Shape Param #
=================================================================
conv2d_58 (Conv2D) (None, 26, 26, 32) 320
_________________________________________________________________
conv2d_59 (Conv2D) (None, 24, 24, 64) 18496
_________________________________________________________________
max_pooling2d_27 (MaxPooling (None, 12, 12, 64) 0
_________________________________________________________________
dropout_53 (Dropout) (None, 12, 12, 64) 0
_________________________________________________________________
flatten_27 (Flatten) (None, 9216) 0
_________________________________________________________________
dense_52 (Dense) (None, 128) 1179776
_________________________________________________________________
dropout_54 (Dropout) (None, 128) 0
_________________________________________________________________
dense_53 (Dense) (None, 14) 1806
=================================================================
Total params: 1,200,398
Trainable params: 1,200,398
Non-trainable params: 0
_________________________________________________________________
这是对fit
方法的调用:
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=0,
validation_data=(X_test, y_test), callbacks=[TQDMNotebookCallback()])
但我得到这个错误:
Error when checking target: expected dense_53 to have 2 dimensions, but got array with shape (77623, 14, 14)
答案
也许你必须把你的input_shape=(28,28,1)
,因为你的图像是28x28灰度
另一答案
检查你的输出形状:它应该是(num_samples, classes)
,而不是(num_samples, 14, 14)
。
以上是关于由于numpy形状张量流,keras无法训练模型的主要内容,如果未能解决你的问题,请参考以下文章
在 Keras 中训练对象检测模型时出现不兼容张量形状的问题
尝试连接 keras 模型:ValueError:无法将 NumPy 数组转换为张量(不支持的对象类型浮点数)