数值线性代数实验-共轭梯度法
Posted cniwoq
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数值线性代数实验-共轭梯度法相关的知识,希望对你有一定的参考价值。
一开始用c++的运算符重载程序总是莫名其妙的崩掉,然后以为是运算符重载的问题就写了个class对矩阵重新封装,结果还是崩,然后好久才发现是我把空间开的太大导致程序崩掉,无语,这样就浪费了我一个上午。。。。
课本上的例题:
$$
egin{equation}
{left[ egin{array}{ccc}
10&1&2&3&4\
1& 9& -1& 2& -3\
2& -1& 7& 3& -5\
3& 2& 3& 12& -1\
4& -3& -5 &-1 &15
end{array}
ight ]} imes {
left[ egin{array}{ccc}
x_1\
x_2\
x_3\
x_4\
x_5
end{array}
ight ]}
={
left[ egin{array}{ccc}
12\ -27\ 14\ -17\ 12
end{array}
ight ]}
end{equation}
$$
输入数据
5 5
10 1 2 3 4
1 9 -1 2 -3
2 -1 7 3 -5
3 2 3 12 -1
4 -3 -5 -1 15
12 -27 14 -17 12
#include "cstdio" #include "cstring" #include "cstdlib" #include "cmath" #include "iostream" using namespace std; const double eps = 1e-6; const int maxr = 10; const int maxc = 10; class Matrix { private: double m[maxr][maxc]; int row, col; public: Matrix operator - (Matrix b) { Matrix c; c.col = this->col; c.row = this->row; for (int i = 0; i < this->row; i++) { for (int j = 0; j < this->col; j++) { c.m[i][j] = this->m[i][j]-b.m[i][j]; } } return c; } Matrix operator + (Matrix b) { Matrix c; c.col = this->col; c.row = this->row; for (int i = 0; i < this->row; i++) { for (int j = 0; j < this->col; j++) { c.m[i][j] = this->m[i][j] + b.m[i][j]; } } return c; } Matrix operator * (Matrix b) { Matrix c; memset(c.m, 0, sizeof(c.m)); c.row = this->row; c.col = b.col; for (int i = 0; i < this->row; i++) { for (int k = 0; k < this->col; k++) { for (int j = 0; j < b.col; j++) { c.m[i][j] += this->m[i][k]*b.m[k][j]; } } } return c; } Matrix operator & (double a) { Matrix c = *this; for (int i = 0; i < this->row; i++) { for (int j = 0; j < this->col; j++) { c.m[i][j] = a*this->m[i][j]; } } return c; } Matrix operator !() { Matrix c = *this; c.row = this->col, c.col = this->row; for (int i = 0; i < this->row; i++) { for (int j = 0; j < this->col; j++) { c.m[j][i] = this->m[i][j]; } } return c; } int dcmp() { for (int i = 0; i < this->row; i++) { for (int j = 0; j < this->col; j++) { if (fabs(this->m[i][j]) > eps) return 1; } } return 0; } void show_Matrix() { for (int i = 0; i < this->row; i++) { printf("%.6f", this->m[i][0]); for (int j = 1; j < this->col; j++) { printf(" %.8f", this->m[i][j]); } printf(" "); } } void set_matrix(int n, int m) { this->row = n, this->col = m; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { scanf("%lf", &this->m[i][j]); } } } void init(int n, int m) { this->row = n, this->col = m; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { this->m[i][j] = 1.0; } } } int Col(){return this->col;} int Row(){return this->row;} double get(int i, int j) {return this->m[i-1][j-1];} }; Matrix Conjugate_gradient(Matrix A, Matrix B) { Matrix x0 = B, p0, r1, p1; double alf, bet; x0.init(A.Col(), 1); Matrix r0 = B-(A*x0); int k = 0; r1 = r0; while (r1.dcmp()) { k++; if (k == 1) p1 = r0; else { bet = (!r1*r1).get(1, 1)/(!r0*r0).get(1, 1); p1 = r1 + (p0&bet); } alf = (!r1*r1).get(1, 1)/(!p1*A*p1).get(1, 1); x0 = x0 + (p1&alf); r0 = r1; r1 = r1-((A&alf)*p1); } return x0; } int main(int argc, char const *argv[]) { // freopen("in.txt", "r", stdin); Matrix A, B, C; int n, m; printf("输入系数矩阵的维数和矩阵A "); scanf("%d %d", &n, &m); A.set_matrix(n, m); printf("输入矩阵B "); B.set_matrix(n, 1); C = Conjugate_gradient(A, B); printf("利用共轭梯度法得到的解为 "); C.show_Matrix(); return 0; }
以上是关于数值线性代数实验-共轭梯度法的主要内容,如果未能解决你的问题,请参考以下文章