评估TensorFlow中多维输入之间的成对欧氏距离
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了评估TensorFlow中多维输入之间的成对欧氏距离相关的知识,希望对你有一定的参考价值。
我有两个形状的二维张量,比如m X d和n X d。什么是优化的(即没有for循环)或评估这两个张量之间的成对欧氏距离的张量流方式,以便得到形状m X n的输出张量。我需要它来创建高斯核的平方项,最终得到一个大小为m x n的协方差矩阵.
等效的未经优化的numpy代码看起来像这样
difference_squared = np.zeros((x.shape[0], x_.shape[0]))
for row_iterator in range(difference_squared.shape[0]):
for column_iterator in range(difference_squared.shape[1]):
difference_squared[row_iterator, column_iterator] = np.sum(np.power(x[row_iterator]-x_[column_iterator], 2))
答案
我在here的帮助下找到了答案。假设两个张量是x1和x2,它们的尺寸是m X d和n X d,它们的成对欧氏距离由下式给出:
tile_1 = tf.tile(tf.expand_dims(x1, 0), [n, 1, 1])
tile_2 = tf.tile(tf.expand_dims(x2, 1), [1, m, 1])
pairwise_euclidean_distance = tf.reduce_sum(tf.square(tf.subtract(tile_1, tile_2)), 2))
以上是关于评估TensorFlow中多维输入之间的成对欧氏距离的主要内容,如果未能解决你的问题,请参考以下文章