熊猫:在groupby之后重新塑造/重新转动数据框
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了熊猫:在groupby之后重新塑造/重新转动数据框相关的知识,希望对你有一定的参考价值。
我在我的数据框的quantile
列上应用duration
函数:
a=df.groupby('version')[['duration']].quantile([.25, .5, .75])
a
duration
version
4229 0.25 1451.00
0.50 1451.00
0.75 1451.00
6065 0.25 213.75
0.50 426.50
0.75 639.25
9209 0.25 386.50
0.50 861.00
0.75 866.00
2304 0.25 664.50
0.50 669.00
0.75 736.50
6389 0.25 1.00
0.50 797.00
0.75 832.00
我想知道如何重新塑造/重新调整上面的数据框,所以新数据框(是的,它必须是数据框格式)可能如下所示:
version duration_Q1 duration_Q2 duration_Q3
4429 1451.00 1451.00 1451.00
6065 213.75 426.50 639.25
9209 386.50 861.00 866.00
2304 664.50 669.00 736.50
6389 1.00 797.00 832.00
谢谢!
答案
您可以使用unstack
,然后进行一些重命名操作
a = pd.DataFrame('duration': {(2304L, 0.25): 1565.6861959516361,
(2304L, 0.5): 446.4769649280514,
(2304L, 0.75): 701.8254115357969,
(4229L, 0.25): 1868.982390749203,
(4229L, 0.5): 242.36201172579996,
(4229L, 0.75): 789.482292226787,
(6065L, 0.25): 1421.9585894685038,
(6065L, 0.5): 357.04491735326343,
(6065L, 0.75): 169.78973203074895,
(6389L, 0.25): 1789.1550141153925,
(6389L, 0.5): 516.9365429825862,
(6389L, 0.75): 1830.6493228794639,
(9209L, 0.25): 1129.853279993191,
(9209L, 0.5): 1759.1258334115485,
(9209L, 0.75): 1499.0498929925702}}
)
pvt = a.unstack()
pvt.columns = pvt.columns.droplevel(0)
pvt.rename(columns={0.25:'duration_Q1',0.5:'duration_Q2',0.75:'duration_Q3'},inplace=True)
duration_Q1 duration_Q2 duration_Q3
version
2304 1565.686196 446.476965 701.825412
4229 1868.982391 242.362012 789.482292
6065 1421.958589 357.044917 169.789732
6389 1789.155014 516.936543 1830.649323
9209 1129.853280 1759.125833 1499.049893
以上是关于熊猫:在groupby之后重新塑造/重新转动数据框的主要内容,如果未能解决你的问题,请参考以下文章