使用FFT和CUDA求解泊松方程
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用FFT和CUDA求解泊松方程相关的知识,希望对你有一定的参考价值。
我正在关注使用cuFFT
库的教程:http://gpgpu.org/static/sc2007/SC07_CUDA_3_Libraries.pdf
在按照其代码的一行一行后,我得到了非常奇怪的结果。
我输入的数据是NxN
float
s数组。该程序执行FFT
正向变换,求解泊松方程,然后执行逆FFT
。输入数据(和输出数据)被称为具有边长N
的方形图像。当我注释掉solve_poisson <<<dimGrid, dimBlock>>> (r_complex_d, kx_d, ky_d, N);
时,它正确地正向转换数据然后执行逆变换,这导致输出数据与输入数据相同。这应该发生。
这是没有调用solve_poisson
方法的输出。
0 r_initial: 0.00125126 r: 0.00125132
1 r_initial: 0.563585 r: 0.563585
2 r_initial: 0.193304 r: 0.193304
3 r_initial: 0.80874 r: 0.80874
4 r_initial: 0.585009 r: 0.585009
5 r_initial: 0.479873 r: 0.479873
6 r_initial: 0.350291 r: 0.350291
7 r_initial: 0.895962 r: 0.895962
8 r_initial: 0.82284 r: 0.82284
9 r_initial: 0.746605 r: 0.746605
10 r_initial: 0.174108 r: 0.174108
11 r_initial: 0.858943 r: 0.858943
12 r_initial: 0.710501 r: 0.710502
13 r_initial: 0.513535 r: 0.513535
14 r_initial: 0.303995 r: 0.303995
15 r_initial: 0.0149846 r: 0.0149846
Press any key to continue . . .
但是,当我取消注释solve_poisson
方法时,输出数据是inf
或nan
,这让我相信在solve_poisson
方法中,scale变量在某种程度上接近于零。所以我把float scale = -(kx[idx] * kx[idx] + ky[idy] * ky[idy]);
换成了float scale = -(kx[idx] * kx[idx] + ky[idy] * ky[idy]) + 0.00001f
。此更改不在原始教程中。这里计算的结果不应该具有极端的正值或负值。
0 r_initial: 0.00125126 r: -11448.1
1 r_initial: 0.563585 r: 11449.3
2 r_initial: 0.193304 r: -11448.3
3 r_initial: 0.80874 r: 11449.2
4 r_initial: 0.585009 r: 11449.4
5 r_initial: 0.479873 r: -11448.4
6 r_initial: 0.350291 r: 11449.5
7 r_initial: 0.895962 r: -11448.6
8 r_initial: 0.82284 r: -11448.5
9 r_initial: 0.746605 r: 11449.4
10 r_initial: 0.174108 r: -11448.3
11 r_initial: 0.858943 r: 11449.3
12 r_initial: 0.710501 r: 11449.2
13 r_initial: 0.513535 r: -11448.4
14 r_initial: 0.303995 r: 11449.3
15 r_initial: 0.0149846 r: -11448.1
Press any key to continue . . .
在本教程中,43
页面上幻灯片22
的示例计算是computed=0.975879 reference=0.975882
,但我的结果完全不同而且非常大。
以下代码是我使用的。
#include <cuda_runtime.h>
#include <device_launch_parameters.h>
#include <cufft.h>
#include <stdlib.h>
#include <iostream>
#define N 4 //4 X 4 // N is the sidelength of the image -> 16 pixels in entire image
#define block_size_x 2
#define block_size_y 2
__global__ void real2complex(cufftComplex *c, float *a, int n);
__global__ void complex2real_scaled(float *a, cufftComplex *c, float scale, int n);
__global__ void solve_poisson(cufftComplex *c, float *kx, float *ky, int n);
int main()
{
float *kx, *ky, *r;
kx = (float *)malloc(sizeof(float) * N);
ky = (float *)malloc(sizeof(float) * N);
r = (float *)malloc(sizeof(float) * N * N);
float *kx_d, *ky_d, *r_d;
cufftComplex *r_complex_d;
cudaMalloc((void **)&kx_d, sizeof(float) * N);
cudaMalloc((void **)&ky_d, sizeof(float) * N);
cudaMalloc((void **)&r_d, sizeof(float) * N * N);
cudaMalloc((void **)&r_complex_d, sizeof(cufftComplex) * N * N);
for (int y = 0; y < N; y++)
for (int x = 0; x < N; x++)
r[x + y * N] = rand() / (float)RAND_MAX;
//r[x + y * N] = sin(exp(-((x - N / 2.0f) * (x - N / 2.0f) + (N / 2.0f - y) * (N / 2.0f - y)) / (20 * 20))) * 255 / sin(1); //Here is sample data that will high values at the center of the image and low values as you go farther and farther away from the center.
float* r_inital = (float *)malloc(sizeof(float) * N * N);
for (int i = 0; i < N * N; i++)
r_inital[i] = r[i];
for (int i = 0; i < N; i++)
{
kx[i] = i - N / 2.0f; //centers kx values to be at center of image
ky[i] = N / 2.0f - i; //centers ky values to be at center of image
}
cudaMemcpy(kx_d, kx, sizeof(float) * N, cudaMemcpyHostToDevice);
cudaMemcpy(ky_d, ky, sizeof(float) * N, cudaMemcpyHostToDevice);
cudaMemcpy(r_d, r, sizeof(float) * N * N, cudaMemcpyHostToDevice);
cufftHandle plan;
cufftPlan2d(&plan, N, N, CUFFT_C2C);
/* Compute the execution configuration, block_size_x*block_size_y = number of threads */
dim3 dimBlock(block_size_x, block_size_y);
dim3 dimGrid(N / dimBlock.x, N / dimBlock.y);
/* Handle N not multiple of block_size_x or block_size_y */
if (N % block_size_x != 0) dimGrid.x += 1;
if (N % block_size_y != 0) dimGrid.y += 1;
real2complex << < dimGrid, dimBlock >> > (r_complex_d, r_d, N);
cufftExecC2C(plan, r_complex_d, r_complex_d, CUFFT_FORWARD);
solve_poisson << <dimGrid, dimBlock >> > (r_complex_d, kx_d, ky_d, N);
cufftExecC2C(plan, r_complex_d, r_complex_d, CUFFT_INVERSE);
float scale = 1.0f / (N * N);
complex2real_scaled << <dimGrid, dimBlock >> > (r_d, r_complex_d, scale, N);
cudaMemcpy(r, r_d, sizeof(float) * N * N, cudaMemcpyDeviceToHost);
for (int i = 0; i < N * N; i++)
std::cout << i << " r_initial: " << r_inital[i] << " r: " << r[i] << std::endl;
system("pause");
/* Destroy plan and clean up memory on device*/
free(kx);
free(ky);
free(r);
free(r_inital);
cufftDestroy(plan);
cudaFree(r_complex_d);
cudaFree(kx_d);
}
__global__ void real2complex(cufftComplex *c, float *a, int n)
{
/* compute idx and idy, the location of the element in the original NxN array */
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int idy = blockIdx.y * blockDim.y + threadIdx.y;
if (idx < n && idy < n)
{
int index = idx + idy * n;
c[index].x = a[index];
c[index].y = 0.0f;
}
}
__global__ void complex2real_scaled(float *a, cufftComplex *c, float scale, int n)
{
/* compute idx and idy, the location of the element in the original NxN array */
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int idy = blockIdx.y * blockDim.y + threadIdx.y;
if (idx < n && idy < n)
{
int index = idx + idy * n;
a[index] = scale * c[index].x;
}
}
__global__ void solve_poisson(cufftComplex *c, float *kx, float *ky, int n)
{
/* compute idx and idy, the location of the element in the original NxN array */
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int idy = blockIdx.y * blockDim.y + threadIdx.y;
if (idx < n && idy < n)
{
int index = idx + idy * n;
float scale = -(kx[idx] * kx[idx] + ky[idy] * ky[idy]) + 0.00001f;
if (idx == 0 && idy == 0) scale = 1.0f;
scale = 1.0f / scale;
c[index].x *= scale;
c[index].y *= scale;
}
}
有什么我搞砸了吗?如果有人能帮助我,我真的很感激。
虽然海报自己发现了错误,但我想分享我自己的2D泊松方程求解器的实现。
实施略有不同于海报链接的实施。
该理论在Solve Poisson Equation Using FFT报道。
MATLAB VERSION
我首先报告了Matlab版本以供参考:
clear all
close all
clc
M = 64; % --- Number of Fourier harmonics along x (should be a multiple of 2)
N = 32; % --- Number of Fourier harmonics along y (should be a multiple of 2)
Lx = 3; % --- Domain size along x
Ly = 1.5; % --- Domain size along y
sigma = 0.1; % --- Characteristic width of f (make << 1)
% --- Wavenumbers
kx = (2 * pi / Lx) * [0 : (M / 2 - 1) (- M / 2) : (-1)]; % --- Wavenumbers along x
ky = (2 * pi / Ly) * [0 : (N / 2 - 1) (- N / 2) : (-1)]; % --- Wavenumbers along y
[Kx, Ky] = meshgrid(kx, ky);
% --- Right-hand side of differential equation
hx = Lx / M; % --- Grid spacing along x
hy = Ly / N; % --- Grid spacing along y
x = (0 : (M - 1)) * hx;
y = (0 : (N - 1)) * hy;
[X, Y] = meshgrid(x, y);
rSquared = (X - 0.5 * Lx).^2 + (Y - 0.5 * Ly).^2;
sigmaSquared = sigma^2;
f = exp(-rSquared / (2 * sigmaSquared)) .* (rSquared - 2 * sigmaSquared) / (sigmaSquared^2);
fHat = fft2(f);
% --- Denominator of the unknown spectrum
den = -(Kx.^2 + Ky.^2);
den(1, 1) = 1; % --- Avoid division by zero at wavenumber (0, 0)
% --- Unknown determination
uHat = ifft2(fHat ./ den);
% uHat(1, 1) = 0; % --- Force the unknown spectrum at (0, 0) to be zero
u = real(uHat);
u = u - u(1,1); % --- Force arbitrary constant to be zero by forcing u(1, 1) = 0
% --- Plots
uRef = exp(-rSquared / (2 * sigmaSquared));
err = 100 * sqrt(sum(sum(abs(u - uRef).^2)) / sum(sum(abs(uRef).^2)));
errMax = norm(u(:)-uRef(:),inf)
fprintf('Percentage root mean square error = %f
', err);
fprintf('Maximum error = %f
', errMax);
surf(X, Y, u)
xlabel('x')
ylabel('y')
zlabel('u')
title('Solution of 2D Poisson equation by spectral method')
CUDA版本
这是相应的CUDA版本:
#include <stdio.h>
#include <fstream>
#include <iomanip>
// --- Greek pi
#define _USE_MATH_DEFINES
#include <math.h>
#include <cufft.h>
#define BLOCKSIZEX 16
#define BLOCKSIZEY 16
#define prec_save 10
/*******************/
/* iDivUp FUNCTION */
/*******************/
int iDivUp(int a, int b){ return ((a % b) != 0) ? (a / b + 1) : (a / b); }
/********************/
/* CUDA ERROR CHECK */
/********************/
// --- Credit to http://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
void gpuAssert(cudaError_t code, const char *file, int line, bool abort = true)
{
if (code != cudaSuccess)
{
fprintf(stderr, "GPUassert: %s %s %d
", cudaGetErrorString(code), file, line);
if (abort) { exit(code); }
}
}
void gpuErrchk(cudaError_t ans) { gpuAssert((ans), __FILE__, __LINE__); }
/**************************************************/
/* COMPUTE RIGHT HAND SIDE OF 2D POISSON EQUATION */
/**************************************************/
__global__ void computeRHS(const float * __restrict__ d_x, const float * __restrict__ d_y,
float2 * __restrict__ d_r, const float Lx, const float Ly, const float sigma,
const int M, const int N) {
const int tidx = threadIdx.x + blockIdx.x * blockDim.x;
const int tidy = threadIdx.y + blockIdx.y * blockDim.y;
if ((tidx >= M) || (tidy >= N)) return;
const float sigmaSquared = sigma * sigma;
const float rSquared = (d_x[tidx] - 0.5f * Lx) * (d_x[tidx] - 0.5f * Lx) +
(d_y[tidy] - 0.5f * Ly) * (d_y[tidy] - 0.5f * Ly);
d_r[tidy * M + tidx].x = expf(-rSquared / (2.f * sigmaSquared)) * (rSquared - 2.f * sigmaSquared) / (sigmaSquared * sigmaSquared);
d_r[tidy * M + tidx].y = 0.f;
}
/****************************************************/
/* SOLVE 2D POISSON EQUATION IN THE SPECTRAL DOMAIN */
/****************************************************/
__global__ void solvePoisson(const float * __restrict__ d_kx, const float * __restrict__ d_ky,
float2 * __restrict__ d_r, const int M, const int N)
{
const int tidx = threadIdx.x + blockIdx.x * blockDim.x;
const int tidy = threadIdx.y + blockIdx.y * blockDim.y;
if ((tidx >= M) || (tidy >= N)) return;
float scale = -(d_kx[tidx] * d_kx[tidx] + d_ky[tidy] * d_ky[tidy]);
if (tidx == 0 && tidy == 0) scale = 1.f;
scale = 1.f / scale;
d_r[M * tidy + tidx].x *= scale;
d_r[M * tidy + tidx].y *= scale;
}
/****************************************************************************/
/* SOLVE 2D POISSON EQUATION IN THE SPECTRAL DOMAIN - SHARED MEMORY VERSION */
/****************************************************************************/
__global__ void solvePoissonShared(const float * __restrict__ d_kx, const float * __restrict__ d_ky,
float2 * __restrict__ d_r, const int M, const int N)
{
const int tidx = threadIdx.x + blockIdx.x * blockDim.x;
const int tidy = threadIdx.y + blockIdx.y * blockDim.y;
if ((tidx >= M) || (tidy >= N)) return;
// --- Use shared memory to minimize multiple access to same spectral coordinate values
__shared__ float kx_s[BLOCKSIZEX], ky_s[BLOCKSIZEY];
kx_s[threadIdx.x] = d_kx[tidx];
ky_s[threadIdx.y] = d_ky[tidy];
__syncthreads();
float scale = -(kx_s[threadIdx.x] * kx_s[threadIdx.x] + ky_s[threadIdx.y] * ky_s[threadIdx.y]);
if (tidx == 0 && tidy == 0) scale = 1.f;
scale = 1.f / scale;
d_r[M * tidy + tidx].x *= scale;
d_r[M * tidy + tidx].y *= scale;
}
/******************************/
/* COMPLEX2REAL SCALED KERNEL */
/******************************/
__global__ void complex2RealScaled(float2 * __restrict__ d_r, float * __restrict__ d_result, const int M, const int N, float scale)
{
const int tidx = threadIdx.x + blockIdx.x * blockDim.x;
const int tidy = threadIdx.y + blockIdx.y * blockDim.y;
if ((tidx >= M) || (tidy >= N)) return;
d_result[tidy * M + tidx] = scale * (d_r[tidy * M + tidx].x - d_r[0].x);
}
/******************************************/
/* COMPLEX2REAL SCALED KERNEL - OPTIMIZED */
/******************************************/
__global__ void complex2RealScaledOptimized(float2 * __restrict__ d_r, float * __restrict__ d_result, const int M, const int N, float scale)
{
const int tidx = threadIdx.x + blockIdx.x * blockDim.x;
const int tidy = threadIdx.y + blockIdx.y * blockDim.y;
if ((tidx >= M) || (tidy >= N)) return;
__shared__ float d_r_0[1];
if (threadIdx.x == 0) d_r_0[0] = d_r[0].x;
volatile float2 c;
c.x = d_r[tidy * M + tidx].x;
c.y = d_r[tidy * M + tidx].y;
d_result[tidy * M + tidx] = scale * (c.x - d_r_0[0]);
}
/**************************************/
/* SAVE FLOAT2 ARRAY FROM GPU TO FILE */
/**************************************/
void saveGPUcomplextxt(const float2 * d_in, const char *filename, const int M) {
float2 *h_in = (float2 *)malloc(M * sizeof(float2));
gpuErrchk(cudaMemcpy(h_in, d_in, M * sizeof(float2), cudaMemcpyDeviceToHost));
std::ofstream outfile;
outfile.open(filename);
for (int i = 0; i < M; i++) {
//printf("%f %f
", h_in[i].c.x, h_in[i].c.y);
outfile << std::setprecision(prec_save) << h_in[i].x << "
"; outfile << std::setprecision(prec_save) << h_in[i].y << "
";
}
outfile.close();
}
/*************************************/
/* SAVE FLOAT ARRAY FROM GPU TO FILE */
/****************以上是关于使用FFT和CUDA求解泊松方程的主要内容,如果未能解决你的问题,请参考以下文章