解释Spark Structured Streaming执行程序和Kafka分区之间的映射
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了解释Spark Structured Streaming执行程序和Kafka分区之间的映射相关的知识,希望对你有一定的参考价值。
我已经使用4个分区在Kafka主题上部署了一个包含4个工作者的结构化流。
我假设将为4个分区部署4个工作程序,在worker < - >分区之间进行一对一映射。
但事实并非如此。所有分区都由同一个Executor提供服务。我通过检查thread-id并通过执行程序登录来确认这一点。
是否有任何文档显示Kafka分区和Spark Structured Streams之间的相关性。还有,我们可以调整任何旋钮。
如果您使用的是DirectStream API,则相关性为1:1(sparkcore:partition)。来自spark streaming guide,
Kafka 0.10的Spark Streaming集成在设计上与0.8 Direct Stream方法类似。它提供简单的并行性,Kafka分区和Spark分区之间的1:1对应关系,以及对偏移和元数据的访问
相关性为“1:n(执行程序:分区)”:Kafka分区只能由一个执行程序使用,一个执行程序可以使用多个Kafka分区。
这与Spark Streaming一致。
对于结构化流,默认模型是“微批处理模型”,“连续处理模型”仍处于“实验”状态。
对于“微批处理模型”,在“KafkaSource.scala”中有
* - The DF returned is based on [[KafkaSourceRDD]] which is constructed such that the
* data from Kafka topic + partition is consistently read by the same executors across
* batches, and cached KafkaConsumers in the executors can be reused efficiently. See the
* docs on [[KafkaSourceRDD]] for more details.
在“KafkaSourceRDD”中
/**
* An RDD that reads data from Kafka based on offset ranges across multiple partitions.
* Additionally, it allows preferred locations to be set for each topic + partition, so that
* the [[KafkaSource]] can ensure the same executor always reads the same topic + partition
* and cached KafkaConsumers (see [[KafkaDataConsumer]] can be used read data efficiently.
*
* ...
*/
private[kafka010] class KafkaSourceRDD(
我们知道默认的位置政策是LocationStrategies.PreferConsistent
。
对于“连续处理模型”,在“KafkaContinuousReader.scala”中
override def createUnsafeRowReaderFactories(): ju.List[DataReaderFactory[UnsafeRow]] = {
...
startOffsets.toSeq.map {
case (topicPartition, start) =>
KafkaContinuousDataReaderFactory(
topicPartition, start, kafkaParams, pollTimeoutMs, failOnDataLoss)
.asInstanceOf[DataReaderFactory[UnsafeRow]]
}.asJava
}
/**
* A data reader factory for continuous Kafka processing. This will be serialized and transformed
* into a full reader on executors.
*
* @param topicPartition The (topic, partition) pair this task is responsible for.
* ...
*/
case class KafkaContinuousDataReaderFactory(
topicPartition: TopicPartition,
startOffset: Long,
kafkaParams: ju.Map[String, Object],
pollTimeoutMs: Long,
failOnDataLoss: Boolean) extends DataReaderFactory[UnsafeRow] {
override def createDataReader(): KafkaContinuousDataReader = {
new KafkaContinuousDataReader(
topicPartition, startOffset, kafkaParams, pollTimeoutMs, failOnDataLoss)
}
}
我们可以知道每个(topic, partition)
将包含在一个工厂中,然后将在一个执行器中。
以上是关于解释Spark Structured Streaming执行程序和Kafka分区之间的映射的主要内容,如果未能解决你的问题,请参考以下文章
一文读懂 超简单的 structured stream 源码解读
解释Spark Structured Streaming执行程序和Kafka分区之间的映射
Spark Structured Streaming - 1