c ++中的布尔表达式(语法)解析器

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了c ++中的布尔表达式(语法)解析器相关的知识,希望对你有一定的参考价值。

我想解析一个布尔表达式(在C ++中)。输入表格:

a and b xor (c and d or a and b);

我只想将这个表达式解析为树,知道优先级规则(不是,和,xor,或)。所以上面的表达式应该类似于:

(a and b) xor ((c and d) or (a and b));

到解析器。

树将是以下形式:

                        a
                   and
                        b
               or
                        c
                   and
                        d
        xor
                   a
              and
                   b

输入将通过命令行或以字符串的形式。我只需要解析器。

有没有可以帮助我做到这一点的消息来源?

答案

这是一个基于Boost Spirit的实现。

因为Boost Spirit基于表达式模板生成递归下降解析器,所以尊重“特殊”(sic)优先级规则(如其他人所提到的)是相当繁琐的。因此语法缺乏一定的优雅。

抽象数据类型

我使用Boost Variant的递归变体支持定义了一个树数据结构,注意expr的定义:

struct op_or  {}; // tag
struct op_and {}; // tag
struct op_xor {}; // tag
struct op_not {}; // tag

typedef std::string var;
template <typename tag> struct binop;
template <typename tag> struct unop;

typedef boost::variant<var, 
        boost::recursive_wrapper<unop <op_not> >, 
        boost::recursive_wrapper<binop<op_and> >,
        boost::recursive_wrapper<binop<op_xor> >,
        boost::recursive_wrapper<binop<op_or> >
        > expr;

(完整来源)

语法规则

如上所述,以下是(稍微繁琐)语法定义。

虽然我不认为这个语法是最优的,但它具有很强的可读性,而且我们自己拥有一个静态编译的解析器,在大约50行代码中具有强类型的AST数据类型。事情可能会更糟糕。

template <typename It, typename Skipper = qi::space_type>
    struct parser : qi::grammar<It, expr(), Skipper>
{
    parser() : parser::base_type(expr_)
    {
        using namespace qi;
        expr_  = or_.alias();

        or_  = (xor_ >> "or"  >> xor_) [ _val = phx::construct<binop<op_or >>(_1, _2) ] | xor_   [ _val = _1 ];
        xor_ = (and_ >> "xor" >> and_) [ _val = phx::construct<binop<op_xor>>(_1, _2) ] | and_   [ _val = _1 ];
        and_ = (not_ >> "and" >> not_) [ _val = phx::construct<binop<op_and>>(_1, _2) ] | not_   [ _val = _1 ];
        not_ = ("not" > simple       ) [ _val = phx::construct<unop <op_not>>(_1)     ] | simple [ _val = _1 ];

        simple = (('(' > expr_ > ')') | var_);
        var_ = qi::lexeme[ +alpha ];
    }

  private:
    qi::rule<It, var() , Skipper> var_;
    qi::rule<It, expr(), Skipper> not_, and_, xor_, or_, simple, expr_;
};

在语法树上操作

显然,你想要评估表达式。现在,我决定停止打印,所以我不必为命名变量做查找表:)

遍历递归变体可能一开始看起来很神秘,但是一旦你掌握了它,boost::static_visitor<>就会非常简单:

struct printer : boost::static_visitor<void>
{
    printer(std::ostream& os) : _os(os) {}
    std::ostream& _os;

    //
    void operator()(const var& v) const { _os << v; }

    void operator()(const binop<op_and>& b) const { print(" & ", b.oper1, b.oper2); }
    void operator()(const binop<op_or >& b) const { print(" | ", b.oper1, b.oper2); }
    void operator()(const binop<op_xor>& b) const { print(" ^ ", b.oper1, b.oper2); }

    void print(const std::string& op, const expr& l, const expr& r) const
    {
        _os << "(";
            boost::apply_visitor(*this, l);
            _os << op;
            boost::apply_visitor(*this, r);
        _os << ")";
    }

    void operator()(const unop<op_not>& u) const
    {
        _os << "(";
            _os << "!";
            boost::apply_visitor(*this, u.oper1);
        _os << ")";
    }
};

std::ostream& operator<<(std::ostream& os, const expr& e)
{ boost::apply_visitor(printer(os), e); return os; }

测试输出:

对于代码中的测试用例,输出以下内容,通过添加(冗余)括号来演示正确规则的正确处理:

result: ((a & b) ^ ((c & d) | (a & b)))
result: ((a & b) ^ ((c & d) | (a & b)))
result: (a & b)
result: (a | b)
result: (a ^ b)
result: (!a)
result: ((!a) & b)
result: (!(a & b))
result: (a | (b | c))

完整代码:

#include <boost/spirit/include/qi.hpp>
#include <boost/spirit/include/phoenix.hpp>
#include <boost/spirit/include/phoenix_operator.hpp>
#include <boost/variant/recursive_wrapper.hpp>

namespace qi    = boost::spirit::qi;
namespace phx   = boost::phoenix;

struct op_or  {};
struct op_and {};
struct op_xor {};
struct op_not {};

typedef std::string var;
template <typename tag> struct binop;
template <typename tag> struct unop;

typedef boost::variant<var, 
        boost::recursive_wrapper<unop <op_not> >, 
        boost::recursive_wrapper<binop<op_and> >,
        boost::recursive_wrapper<binop<op_xor> >,
        boost::recursive_wrapper<binop<op_or> >
        > expr;

template <typename tag> struct binop 
{ 
    explicit binop(const expr& l, const expr& r) : oper1(l), oper2(r) { }
    expr oper1, oper2; 
};

template <typename tag> struct unop  
{ 
    explicit unop(const expr& o) : oper1(o) { }
    expr oper1; 
};

struct printer : boost::static_visitor<void>
{
    printer(std::ostream& os) : _os(os) {}
    std::ostream& _os;

    //
    void operator()(const var& v) const { _os << v; }

    void operator()(const binop<op_and>& b) const { print(" & ", b.oper1, b.oper2); }
    void operator()(const binop<op_or >& b) const { print(" | ", b.oper1, b.oper2); }
    void operator()(const binop<op_xor>& b) const { print(" ^ ", b.oper1, b.oper2); }

    void print(const std::string& op, const expr& l, const expr& r) const
    {
        _os << "(";
            boost::apply_visitor(*this, l);
            _os << op;
            boost::apply_visitor(*this, r);
        _os << ")";
    }

    void operator()(const unop<op_not>& u) const
    {
        _os << "(";
            _os << "!";
            boost::apply_visitor(*this, u.oper1);
        _os << ")";
    }
};

std::ostream& operator<<(std::ostream& os, const expr& e)
{ boost::apply_visitor(printer(os), e); return os; }

template <typename It, typename Skipper = qi::space_type>
    struct parser : qi::grammar<It, expr(), Skipper>
{
    parser() : parser::base_type(expr_)
    {
        using namespace qi;

        expr_  = or_.alias();

        or_  = (xor_ >> "or"  >> or_ ) [ _val = phx::construct<binop<op_or >>(_1, _2) ] | xor_   [ _val = _1 ];
        xor_ = (and_ >> "xor" >> xor_) [ _val = phx::construct<binop<op_xor>>(_1, _2) ] | and_   [ _val = _1 ];
        and_ = (not_ >> "and" >> and_) [ _val = phx::construct<binop<op_and>>(_1, _2) ] | not_   [ _val = _1 ];
        not_ = ("not" > simple       ) [ _val = phx::construct<unop <op_not>>(_1)     ] | simple [ _val = _1 ];

        simple = (('(' > expr_ > ')') | var_);
        var_ = qi::lexeme[ +alpha ];

        BOOST_SPIRIT_DEBUG_NODE(expr_);
        BOOST_SPIRIT_DEBUG_NODE(or_);
        BOOST_SPIRIT_DEBUG_NODE(xor_);
        BOOST_SPIRIT_DEBUG_NODE(and_);
        BOOST_SPIRIT_DEBUG_NODE(not_);
        BOOST_SPIRIT_DEBUG_NODE(simple);
        BOOST_SPIRIT_DEBUG_NODE(var_);
    }

  private:
    qi::rule<It, var() , Skipper> var_;
    qi::rule<It, expr(), Skipper> not_, and_, xor_, or_, simple, expr_;
};

int main()
{
    for (auto& input : std::list<std::string> {
            // From the OP:
            "(a and b) xor ((c and d) or (a and b));",
            "a and b xor (c and d or a and b);",

            /// Simpler tests:
            "a and b;",
            "a or b;",
            "a xor b;",
            "not a;",
            "not a and b;",
            "not (a and b);",
            "a or b or c;",
            })
    {
        auto f(std::begin(input)), l(std::end(input));
        parser<decltype(f)> p;

        try
        {
            expr result;
            bool ok = qi::phrase_parse(f,l,p > ';',qi::space,result);

            if (!ok)
                std::cerr << "invalid input
";
            else
                std::cout << "result: " << result << "
";

        } catch (const qi::expectation_failure<decltype(f)>& e)
        {
            std::cerr << "expectation_failure at '" << std::string(e.first, e.last) << "'
";
        }

        if (f!=l) std::cer

以上是关于c ++中的布尔表达式(语法)解析器的主要内容,如果未能解决你的问题,请参考以下文章

工作中的那些坑——语法解析器

C# 中的 Sql Parser 用于语法检查 Oracle 语句

使用 Roslyn 编译器服务

使用 ANTLR 捕获(并保留)所有评论

JSON解析器之json schema校验及代码实现

C++ OBJ 解析器 - 第一次机会异常