使用sklearn获得精度和召回
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用sklearn获得精度和召回相关的知识,希望对你有一定的参考价值。
使用下面的代码,我有Accuracy
。现在我想
1)找到每个折叠的precision
和recall
(总共10倍)
2)获得mean
为precision
3)获得mean
为recall
这可能类似于下面的print(scores)
和print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
。
有什么想法吗?
import numpy as np
from sklearn import cross_validation
from sklearn import datasets
from sklearn import svm
from sklearn.model_selection import StratifiedKFold
iris = datasets.load_iris()
skf = StratifiedKFold(n_splits=10)
clf = svm.SVC(kernel='linear', C=1)
scores = cross_validation.cross_val_score(clf, iris.data, iris.target, cv=10)
print(scores) #[ 1. 0.93333333 1. 1. 0.86666667 1. 0.93333333 1. 1. 1.]
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2)) # Accuracy: 0.97 (+/- 0.09)
答案
这有点不同,因为cross_val_score无法计算非二进制分类的精度/召回率,因此您需要使用recision_score,recall_score并手动进行交叉验证。参数average ='micro'计算全局精度/召回率。
import numpy as np
from sklearn import cross_validation
from sklearn import datasets
from sklearn import svm
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import precision_score, recall_score
iris = datasets.load_iris()
skf = StratifiedKFold(n_splits=10)
clf = svm.SVC(kernel='linear', C=1)
X = iris.data
y = iris.target
precision_scores = []
recall_scores = []
for train_index, test_index in skf.split(X, y):
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
y_pred = clf.fit(X_train, y_train).predict(X_test)
precision_scores.append(precision_score(y_test, y_pred, average='micro'))
recall_scores.append(recall_score(y_test, y_pred, average='micro'))
print(precision_scores)
print("Recall: %0.2f (+/- %0.2f)" % (np.mean(precision_scores), np.std(precision_scores) * 2))
print(recall_scores)
print("Recall: %0.2f (+/- %0.2f)" % (np.mean(recall_scores), np.std(recall_scores) * 2))
以上是关于使用sklearn获得精度和召回的主要内容,如果未能解决你的问题,请参考以下文章