使用tf.train时,使用tf.dataset的Keras model.fit()会失败

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用tf.train时,使用tf.dataset的Keras model.fit()会失败相关的知识,希望对你有一定的参考价值。

总结:根据documentation,Keras model.fit()应该接受tf.dataset作为输入(我使用TF版本1.12.0)。如果我手动完成训练步骤但是在同一模型上使用model.fit(),我可以训练我的模型,我得到一个我无法解决的错误。

这是我所做的草图:我的数据集太大而不适合内存,由许多文件组成,每个文件具有不同的行数(100个特征,标签)。我想使用tf.data来构建我的数据管道:

def data_loader(filename):
    '''load a single data file with many rows'''
    features, labels = load_hdf5(filename)
    ...
    return features, labels

def make_dataset(filenames, batch_size):
    '''read files one by one, pick individual rows, batch them and repeat'''
    dataset = tf.data.Dataset.from_tensor_slices(filenames)
    dataset = dataset.map(      # Problem here! See edit for solution
        lambda filename: tuple(tf.py_func(data_loader, [filename], [float32, tf.float32])))
    dataset = dataset.flat_map(
        lambda features, labels: tf.data.Dataset.from_tensor_slices((features, labels)))
    dataset = dataset.batch(batch_size)
    dataset = dataset.repeat()
    dataset = dataset.prefetch(1000)
    return dataset

_BATCH_SIZE = 128
training_set = make_dataset(training_files, batch_size=_BATCH_SIZE)

我想尝试一个非常基本的逻辑回归模型:

inputs = tf.keras.layers.Input(shape=(100,))
outputs = tf.keras.layers.Dense(1, activation='softmax')(inputs)
model = tf.keras.Model(inputs, outputs)

如果我手动训练它一切正常,例如:

labels = tf.placeholder(tf.float32)
loss = tf.reduce_mean(tf.keras.backend.categorical_crossentropy(labels, outputs))
train_step = tf.train.GradientDescentOptimizer(.05).minimize(loss)

iterator = training_set.make_one_shot_iterator()
next_element = iterator.get_next()
init_op = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init_op)
    for i in range(training_size // _BATCH_SIZE):
        x, y = sess.run(next_element)
        train_step.run(feed_dict={inputs: x, labels: y})

但是,如果我试着像这样使用model.fit

model.compile('adam', 'categorical_crossentropy', metrics=['acc'])
model.fit(training_set.make_one_shot_iterator(),
          steps_per_epoch=training_size // _BATCH_SIZE,
          epochs=1,
          verbose=1)

我在keras'es ValueError: Cannot take the length of Shape with unknown rank.函数中得到一条错误消息_standardize_user_data

我尝试过很多东西,但无法解决问题。有任何想法吗?

编辑:基于@kvish的答案,解决方案是将地图从lambda更改为指定正确张量尺寸的函数,例如:

def data_loader(filename):
    def loader_impl(filename):
        features, labels, _ = load_hdf5(filename)
        ...
        return features, labels

    features, labels = tf.py_func(loader_impl, [filename], [tf.float32, tf.float32])
    features.set_shape((None, 100))
    labels.set_shape((None, 1))
    return features, labels

而现在,所有需要做的就是从map调用这个函数:

dataset = dataset.map(data_loader)
答案

可能tf.py_func产生一个未知的形状,Keras无法推断。我们可以使用set_shape(your_shape)方法设置由它返回的张量的形状,这将有助于Keras推断结果的形状。

以上是关于使用tf.train时,使用tf.dataset的Keras model.fit()会失败的主要内容,如果未能解决你的问题,请参考以下文章

为啥在复制 tf.dataset 时使用 steps_per_epoch?

tf.train.GradientDescentOptimizer()、tf.train.MomentumOptimizer()、f.train.AdamOptimizer()区别

tf.train.MonitoredTrainingSession 中的 tf.train.CheckpointSaverHook 是不是会在检查点或异步完成时阻止训练?

Tensorflow:如何使用来自 cifar10 的 tf.train.batch 绘制小批量?

TensorFlow:当批次完成训练时,tf.train.batch 会自动加载下一批吗?

tensorflow机器学习指数衰减学习率的使用tf.train.exponential_decay