NVCC和NVRTC在编译为PTX时的差异

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了NVCC和NVRTC在编译为PTX时的差异相关的知识,希望对你有一定的参考价值。

摘要

我正在将基于Scratchapixel version的简单光线跟踪应用程序移植到一堆GPU库中。我已成功使用运行时API和驱动程序API将其移植到CUDA,但是当我尝试将运行时编译的PTX与NVRTC一起使用时,会抛出Segmentation fault (core dumped)。如果我在内核文件的开头(请参见下文)取消注释#include <math.h>指令,它仍然可以在NVCC中使用(生成的PTX完全相同),但在使用NVRTC编译时将失败。

我想知道如何使NVRTC像NVCC一样运转(甚至有可能?),或者至少要了解此问题背后的原因。

详细说明

文件kernel.cu(内核源::)>

//#include <math.h>

#define MAX_RAY_DEPTH 5

template<typename T>
class Vec3
{
public:
    T x, y, z;
    __device__ Vec3() : x(T(0)), y(T(0)), z(T(0)) {}
    __device__ Vec3(T xx) : x(xx), y(xx), z(xx) {}
    __device__ Vec3(T xx, T yy, T zz) : x(xx), y(yy), z(zz) {}
    __device__ Vec3& normalize()
    {
        T nor2 = length2();
        if (nor2 > 0) {
            T invNor = 1 / sqrt(nor2);
            x *= invNor, y *= invNor, z *= invNor;
        }
        return *this;
    }
    __device__ Vec3<T> operator * (const T &f) const { return Vec3<T>(x * f, y * f, z * f); }
    __device__ Vec3<T> operator * (const Vec3<T> &v) const { return Vec3<T>(x * v.x, y * v.y, z * v.z); }
    __device__ T dot(const Vec3<T> &v) const { return x * v.x + y * v.y + z * v.z; }
    __device__ Vec3<T> operator - (const Vec3<T> &v) const { return Vec3<T>(x - v.x, y - v.y, z - v.z); }
    __device__ Vec3<T> operator + (const Vec3<T> &v) const { return Vec3<T>(x + v.x, y + v.y, z + v.z); }
    __device__ Vec3<T>& operator += (const Vec3<T> &v) { x += v.x, y += v.y, z += v.z; return *this; }
    __device__ Vec3<T>& operator *= (const Vec3<T> &v) { x *= v.x, y *= v.y, z *= v.z; return *this; }
    __device__ Vec3<T> operator - () const { return Vec3<T>(-x, -y, -z); }
    __device__ T length2() const { return x * x + y * y + z * z; }
    __device__ T length() const { return sqrt(length2()); }
};

typedef Vec3<float> Vec3f;
typedef Vec3<bool> Vec3b;

class Sphere
{
public:
    const char* id;
    Vec3f center;                           /// position of the sphere
    float radius, radius2;                  /// sphere radius and radius^2
    Vec3f surfaceColor, emissionColor;      /// surface color and emission (light)
    float transparency, reflection;         /// surface transparency and reflectivity
    int animation_frame;
    Vec3b animation_position_rand;
    Vec3f animation_position;
    Sphere(
        const char* id,
        const Vec3f &c,
        const float &r,
        const Vec3f &sc,
        const float &refl = 0,
        const float &transp = 0,
        const Vec3f &ec = 0) :
        id(id), center(c), radius(r), radius2(r * r), surfaceColor(sc),
        emissionColor(ec), transparency(transp), reflection(refl)
    {
        animation_frame = 0;
    }
    //[comment]
    // Compute a ray-sphere intersection using the geometric solution
    //[/comment]
    __device__ bool intersect(const Vec3f &rayorig, const Vec3f &raydir, float &t0, float &t1) const
    {
        Vec3f l = center - rayorig;
        float tca = l.dot(raydir);
        if (tca < 0) return false;
        float d2 = l.dot(l) - tca * tca;
        if (d2 > radius2) return false;
        float thc = sqrt(radius2 - d2);
        t0 = tca - thc;
        t1 = tca + thc;

        return true;
    }
};

__device__ float mix(const float &a, const float &b, const float &mixval)
{
    return b * mixval + a * (1 - mixval);
}

__device__ Vec3f trace(
    const Vec3f &rayorig,
    const Vec3f &raydir,
    const Sphere *spheres,
    const unsigned int spheres_size,
    const int &depth)
{
    float tnear = INFINITY;
    const Sphere* sphere = NULL;
    // find intersection of this ray with the sphere in the scene
    for (unsigned i = 0; i < spheres_size; ++i) {
        float t0 = INFINITY, t1 = INFINITY;
        if (spheres[i].intersect(rayorig, raydir, t0, t1)) {
            if (t0 < 0) t0 = t1;
            if (t0 < tnear) {
                tnear = t0;
                sphere = &spheres[i];
            }
        }
    }
    // if there's no intersection return black or background color
    if (!sphere) return Vec3f(2);
    Vec3f surfaceColor = 0; // color of the ray/surfaceof the object intersected by the ray
    Vec3f phit = rayorig + raydir * tnear; // point of intersection
    Vec3f nhit = phit - sphere->center; // normal at the intersection point
    nhit.normalize(); // normalize normal direction
    // If the normal and the view direction are not opposite to each other
    // reverse the normal direction. That also means we are inside the sphere so set
    // the inside bool to true. Finally reverse the sign of IdotN which we want
    // positive.
    float bias = 1e-4; // add some bias to the point from which we will be tracing
    bool inside = false;
    if (raydir.dot(nhit) > 0) nhit = -nhit, inside = true;
    if ((sphere->transparency > 0 || sphere->reflection > 0) && depth < MAX_RAY_DEPTH) {
        float facingratio = -raydir.dot(nhit);
        // change the mix value to tweak the effect
        float fresneleffect = mix(pow(1 - facingratio, 3), 1, 0.1);
        // compute reflection direction (not need to normalize because all vectors
        // are already normalized)
        Vec3f refldir = raydir - nhit * 2 * raydir.dot(nhit);
        refldir.normalize();
        Vec3f reflection = trace(phit + nhit * bias, refldir, spheres, spheres_size, depth + 1);
        Vec3f refraction = 0;
        // if the sphere is also transparent compute refraction ray (transmission)
        if (sphere->transparency) {
            float ior = 1.1, eta = (inside) ? ior : 1 / ior; // are we inside or outside the surface?
            float cosi = -nhit.dot(raydir);
            float k = 1 - eta * eta * (1 - cosi * cosi);
            Vec3f refrdir = raydir * eta + nhit * (eta *  cosi - sqrt(k));
            refrdir.normalize();
            refraction = trace(phit - nhit * bias, refrdir, spheres, spheres_size, depth + 1);
        }
        // the result is a mix of reflection and refraction (if the sphere is transparent)
        surfaceColor = (
            reflection * fresneleffect +
            refraction * (1 - fresneleffect) * sphere->transparency) * sphere->surfaceColor;
    }
    else {
        // it's a diffuse object, no need to raytrace any further
        for (unsigned i = 0; i < spheres_size; ++i) {
            if (spheres[i].emissionColor.x > 0) {
                // this is a light
                Vec3f transmission = 1;
                Vec3f lightDirection = spheres[i].center - phit;
                lightDirection.normalize();
                for (unsigned j = 0; j < spheres_size; ++j) {
                    if (i != j) {
                        float t0, t1;
                        if (spheres[j].intersect(phit + nhit * bias, lightDirection, t0, t1)) {
                            transmission = 0;
                            break;
                        }
                    }
                }
                surfaceColor += sphere->surfaceColor * transmission *
                max(float(0), nhit.dot(lightDirection)) * spheres[i].emissionColor;
            }
        }
    }

    return surfaceColor + sphere->emissionColor;
}

extern "C" __global__
void raytrace_kernel(unsigned int width, unsigned int height, Vec3f *image, Sphere *spheres, unsigned int spheres_size, float invWidth, float invHeight, float aspectratio, float angle) {
    int x = blockIdx.x * blockDim.x + threadIdx.x;
    int y = blockIdx.y * blockDim.y + threadIdx.y;

    if (y < height && x < width) {
        float xx = (2 * ((x + 0.5) * invWidth) - 1) * angle * aspectratio;
        float yy = (1 - 2 * ((y + 0.5) * invHeight)) * angle;
        Vec3f raydir(xx, yy, -1);
        raydir.normalize();
        image[y*width+x] = trace(Vec3f(0), raydir, spheres, spheres_size, 0);
    }
}

我可以使用:nvcc --ptx kernel.cu -o kernel.ptxfull PTX here)成功编译它,并使用以下代码段在cuModuleLoadDataEx中将驱动器API使用该PTX。它按预期工作。

即使我取消注释#include <math.h>行,它也能正常工作(实际上,生成的PTX完全相同)。

CudaSafeCall( cuInit(0) );

CUdevice device;
CudaSafeCall( cuDeviceGet(&device, 0) );

CUcontext context;
CudaSafeCall( cuCtxCreate(&context, 0, device) );

unsigned int error_buffer_size = 1024;
std::vector<CUjit_option> options;
std::vector<void*> values;
char* error_log = new char[error_buffer_size];
options.push_back(CU_JIT_ERROR_LOG_BUFFER); //Pointer to a buffer in which to print any log messages that reflect errors
values.push_back(error_log);
options.push_back(CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES); //Log buffer size in bytes. Log messages will be capped at this size (including null terminator)
values.push_back(&error_buffer_size);
options.push_back(CU_JIT_TARGET_FROM_CUCONTEXT); //Determines the target based on the current attached context (default)
values.push_back(0); //No option value required for CU_JIT_TARGET_FROM_CUCONTEXT

CUmodule module;
CUresult status = cuModuleLoadDataEx(&module, ptxSource, options.size(), options.data(), values.data());
if (error_log && error_log[0]) { //https://stackoverflow.com/a/7970669/3136474
    std::cout << "Compiler error: " << error_log << std::endl;
}
CudaSafeCall( status );

但是,每当我尝试使用NVRTC(full PTX here)编译此确切的内核时,它都能成功编译,但是在调用Segmentation fault (core dumped)时给了我一个cuModuleLoadDataEx(尝试使用生成的PTX时。)>

如果我取消注释#include <math.h>行,则它在nvrtcCompileProgram调用中失败,并显示以下输出:

nvrtcSafeBuild() failed at cuda_raytracer_nvrtc_api.cpp:221 : NVRTC_ERROR_COMPILATION
Build log:
/usr/include/bits/mathcalls.h(177): error: linkage specification is incompatible with previous "isinf"
__nv_nvrtc_builtin_header.h(126689): here

/usr/include/bits/mathcalls.h(211): error: linkage specification is incompatible with previous "isnan"
__nv_nvrtc_builtin_header.h(126686): here

2 errors detected in the compilation of "kernel.cu".

我用于NVRTC编译的代码是:

nvrtcProgram prog;
NvrtcSafeCall( nvrtcCreateProgram(&prog, kernelSource, "kernel.cu", 0, NULL, NULL) );

// https://docs.nvidia.com/cuda/nvrtc/index.html#group__options
std::vector<const char*> compilationOpts;
compilationOpts.push_back("--device-as-default-execution-space");
// NvrtcSafeBuild is a macro which automatically prints nvrtcGetProgramLog if the compilation fails
NvrtcSafeBuild( nvrtcCompileProgram(prog, compilationOpts.size(), compilationOpts.data()), prog );

size_t ptxSize;
NvrtcSafeCall( nvrtcGetPTXSize(prog, &ptxSize) );
char* ptxSource = new char[ptxSize];
NvrtcSafeCall( nvrtcGetPTX(prog, ptxSource) );

NvrtcSafeCall( nvrtcDestroyProgram(&prog) );

然后,我使用前面的代码片段简单地加载ptxSource(注意:该代码块与驱动程序API版本和NVRTC版本都使用相同。)>

到目前为止我已经注意到/尝试过的其他事项
  1. PTX generated by the NVCCthe one generated by NVRTC完全不同,但是我无法理解它们以识别可能的问题。

  • 试图为编译器指定特定的GPU体系结构(在我的情况下为CC 6.1),没有区别。
  • 试图禁用任何编译器优化(--ftz=false --prec-sqrt=true --prec-div=true --fmad=false中的选项nvrtcCompileProgram)。 PTX文件变大了,但仍然Segfaulting。
  • 试图将--std=c++11--std=c++14添加到NVRTC编译器选项。使用NVRTC中的任何一个,NVRTC都会生成几乎为空的(4行)PTX,但在尝试使用它之前不会发出警告或错误。
  • 环境
    • SO:Ubuntu 18.04.4 LTS 64位
    • nvcc --version:Cuda编译工具,版本10.1,V10.1.168。建立于Wed_Apr_24_19:10:27_PDT_2019
    • gcc --version:gcc(Ubuntu 7.5.0-3ubuntu1〜18.04)7.5.0
    • 硬件:英特尔I7-7700HQ,GeForce GTX 1050 Ti

    在OP + 1天编辑

    我忘记添加我的环境。请参阅上一节。

    您还可以使用ptxas编译nvrtc输出吗? – @talonmies的评论

    nvcc生成的PTX编译时显示警告:

    $ ptxas -o /tmp/temp_ptxas_output.o kernel.ptx
    ptxas warning : Stack size for entry function 'raytrace_kernel' cannot be statically determined
    

    这归因于递归内核函数(more on that)。可以安全地忽略它。

    nvrtc生成的PTX会进行编译,并发出错误:

    $ ptxas -o /tmp/temp_ptxas_output.o nvrtc_kernel.ptx ptxas fatal : Unresolved extern function '_Z5powiffi'
    基于this question,我向__device__类构造函数添加了Sphere,并删除了--device-as-default-execution-space编译器选项。它现在生成的PTX稍有不同,但是仍然会出现相同的错误。

    现在使用#include <math.h>进行编译会产生很多“没有执行空间注释的函数被认为是宿主函数,并且在JIT模式下不允许使用宿主函数。”警告,除了先前的错误。

    如果我尝试使用accepted solution of the question,则会抛出一系列语法错误,并且无法编译。 NVCC仍然可以正常工作。

    总结,我正在将基于Scratchapixel版本的简单光线跟踪应用程序移植到一堆GPU库中。我使用运行时API和驱动程序API成功地将其移植到CUDA,但它...

    仅是古代comment-and-test method的元凶:如果删除pow方法内部用于计算菲涅耳效果的trace调用,错误就会消失。

    目前,我只是将pow(var, 3)替换为var*var*var

    [我将尝试创建MVCE以便最终向NVIDIA提交错误报告...

    答案
    仅是古代comment-and-test method的元凶:如果删除pow方法内部用于计算菲涅耳效果的trace调用,错误就会消失。

    目前,我只是将pow(var, 3)替换为var*var*var

    [我将尝试创建MVCE以便最终向NVIDIA提交错误报告...

    以上是关于NVCC和NVRTC在编译为PTX时的差异的主要内容,如果未能解决你的问题,请参考以下文章

    将 CUDA-gdb 与 NVRTC 一起使用

    PTX 和 CUBIN w.r.t 有啥区别? NVCC 编译器?

    NVRTC 编译何时应生成 CUBIN?

    在 CUDA NVRTC 代码中包含 C 标准头文件

    CUDA compiler driver nvcc 散点 part 2

    ManActivity + 启动时的片段差异