熊猫滚动加权平均值

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了熊猫滚动加权平均值相关的知识,希望对你有一定的参考价值。

我想将加权滚动平均值应用于大型时间序列,设置为大熊猫数据帧,其中每天的权重不同。这是数据帧的子集

DF:

Date        v_std  vertical                  
2010-10-01  1.909   545.231
2010-10-02  1.890   538.610
2010-10-03  1.887   542.759
2010-10-04  1.942   545.221
2010-10-05  1.847   536.832
2010-10-06  1.884   538.858
2010-10-07  1.864   538.017
2010-10-08  1.833   540.737
2010-10-09  1.847   537.906
2010-10-10  1.881   538.210
2010-10-11  1.868   544.238
2010-10-12  1.856   534.878

我想使用v_std作为权重来获取垂直列的滚动平均值。我一直在使用加权平均函数:

def wavg(group, avg_name, weight_name):
    d = group[avg_name]
    w = group[weight_name]
    try:
        return (d * w).sum() / w.sum()
    except ZeroDivisionError:
        return d.mean()

但我无法弄清楚如何实现滚动加权平均值。我认为它类似于

df.rolling(window = 7).apply(wavg, "vertical", "v_std")

或者使用rolling_apply?或者我是否必须一起编写新功能?谢谢!

答案

我相信你可能正在寻找rolling()的win_type参数。你可以指定不同类型的窗口,比如'triang'(三角形)......

您可以查看https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rolling.html中的参数

另一答案

这就是我实施加权平均值的方法。如果对于这种事情有一个pairwise_apply会很好。

from pandas.core.window import _flex_binary_moment, _Rolling_and_Expanding

def weighted_mean(self, weights, **kwargs):
    weights = self._shallow_copy(weights)
    window = self._get_window(weights)

    def _get_weighted_mean(X, Y):
        X = X.astype('float64')
        Y = Y.astype('float64')
        sum_f = lambda x: x.rolling(window, self.min_periods, center=self.center).sum(**kwargs)
        return sum_f(X * Y) / sum_f(Y)

    return _flex_binary_moment(self._selected_obj, weights._selected_obj,
                               _get_weighted_mean, pairwise=True)

_Rolling_and_Expanding.weighted_mean = weighted_mean

df['mean'] = df['vertical'].rolling(window = 7).weighted_mean(df['v_std'])
另一答案

以下代码应该做(请原谅我的长命名约定)。这很简单(只是为了利用新版本的Pandas的rolling.apply,它添加了raw = False以允许传递比1d数组更多的信息):

def get_weighted_average(dataframe,window,columnname_data,columnname_weights):
    processed_dataframe=dataframe.loc[:,(columnname_data,columnname_weights)].set_index(columnname_weights)   
    def get_mean_withweights(processed_dataframe_windowed):
        return np.average(a=processed_dataframe_windowed,weights=processed_dataframe_windowed.index)
    return processed_dataframe.rolling(window=window).apply(func=get_mean_withweights,raw=False)
另一答案

这是我使用pandas _Rolling_and_Expanding滚动加权平均值的解决方案:

首先,我为乘法添加了新列:

df['mul'] = df['value'] * df['weight']

然后编写您想要应用的函数:

from pandas.core.window import _Rolling_and_Expanding
def weighted_average(x):
    d = []
    d.append(x['mul'].sum()/x['weight'].sum())
    return pd.Series(d, index=['wavg'])

_Rolling_and_Expanding.weighted_average = weighted_average

通过以下行应用该功能:

result = mean_per_group.rolling(window=7).weighted_average()

然后你可以得到你想要的系列:

result['wavg']

以上是关于熊猫滚动加权平均值的主要内容,如果未能解决你的问题,请参考以下文章

在熊猫滚动中应用自定义窗口功能

熊猫数据框每一行的加权平均值

基于买卖的加权平均收购成本熊猫

如何使用带有询价和出价的熊猫数据框计算体积加权平均价格(VWAP)?

在 oracle 中计算滚动加权平均值

熊猫 - 计算每小时平均滚动 10 分钟