计算11的1位数到N的幂
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了计算11的1位数到N的幂相关的知识,希望对你有一定的参考价值。
我遇到了一个有趣的问题:你如何计算11的表示中的1位数到N,0<N<=1000
的幂。
设d是1位数
N = 2 11 ^ 2 = 121 d = 2
N = 3 11 ^ 3 = 1331 d = 2
最差时间复杂度预期为O(N ^ 2)
你计算数字和计算我得到最后一位数并除以10的1位数的简单方法不能很好地工作。 11 ^ 1000甚至在任何标准数据类型中都不可重复。
有任何想法吗?
11的幂可以存储为字符串并以这种方式非常快速地计算,而不需要通用的任意精度数学包。你需要的只是乘以10并加上。
例如,111
是11
。为了得到11
(112
)的下一个力量,你乘以(10 + 1)
,这实际上是一个零加零的数字,加上数字:110 + 11 = 121
。
同样,113
可以计算为:1210 + 121 = 1331
。
等等:
11^2 11^3 11^4 11^5 11^6
110 1210 13310 146410 1610510
+11 +121 +1331 +14641 +161051
--- ---- ----- ------ -------
121 1331 14641 161051 1771561
所以这就是我的方法,至少在最初阶段。
举个例子,这里是一个Python函数,使用所描述的方法将11提升到第n个幂(我知道Python支持任意精度,请记住我只是用它作为演示如何这是一个算法,这是问题被标记的方式):
def elevenToPowerOf(n):
# Anything to the zero is 1.
if n == 0: return "1"
# Otherwise, n <- n * 10 + n, once for each level of power.
num = "11"
while n > 1:
n = n - 1
# Make multiply by eleven easy.
ten = num + "0"
num = "0" + num
# Standard primary school algorithm for adding.
newnum = ""
carry = 0
for dgt in range(len(ten)-1,-1,-1):
res = int(ten[dgt]) + int(num[dgt]) + carry
carry = res // 10
res = res % 10
newnum = str(res) + newnum
if carry == 1:
newnum = "1" + newnum
# Prepare for next multiplication.
num = newnum
# There you go, 11^n as a string.
return num
并且,为了测试,一个小程序可以为您在命令行上提供的每个电源计算出这些值:
import sys
for idx in range(1,len(sys.argv)):
try:
power = int(sys.argv[idx])
except (e):
print("Invalid number [%s]" % (sys.argv[idx]))
sys.exit(1)
if power < 0:
print("Negative powers not allowed [%d]" % (power))
sys.exit(1)
number = elevenToPowerOf(power)
count = 0
for ch in number:
if ch == '1':
count += 1
print("11^%d is %s, has %d ones" % (power,number,count))
当你运行时:
time python3 prog.py 0 1 2 3 4 5 6 7 8 9 10 11 12 1000
你可以看到它既准确(用bc
检查)又快(在大约半秒内完成):
11^0 is 1, has 1 ones
11^1 is 11, has 2 ones
11^2 is 121, has 2 ones
11^3 is 1331, has 2 ones
11^4 is 14641, has 2 ones
11^5 is 161051, has 3 ones
11^6 is 1771561, has 3 ones
11^7 is 19487171, has 3 ones
11^8 is 214358881, has 2 ones
11^9 is 2357947691, has 1 ones
11^10 is 25937424601, has 1 ones
11^11 is 285311670611, has 4 ones
11^12 is 3138428376721, has 2 ones
11^1000 is 2469932918005826334124088385085221477709733385238396234869182951830739390375433175367866116456946191973803561189036523363533798726571008961243792655536655282201820357872673322901148243453211756020067624545609411212063417307681204817377763465511222635167942816318177424600927358163388910854695041070577642045540560963004207926938348086979035423732739933235077042750354729095729602516751896320598857608367865475244863114521391548985943858154775884418927768284663678512441565517194156946312753546771163991252528017732162399536497445066348868438762510366191040118080751580689254476068034620047646422315123643119627205531371694188794408120267120500325775293645416335230014278578281272863450085145349124727476223298887655183167465713337723258182649072572861625150703747030550736347589416285606367521524529665763903537989935510874657420361426804068643262800901916285076966174176854351055183740078763891951775452021781225066361670593917001215032839838911476044840388663443684517735022039957481918726697789827894303408292584258328090724141496484460001, has 105 ones
real 0m0.609s
user 0m0.592s
sys 0m0.012s
这可能不一定是O(n2)
但它应该足够快到你的域约束。
当然,考虑到这些限制,你可以使用我称之为前代的方法来制作O(1)
。只需编写一个程序来生成一个可插入程序的数组,该程序包含一个合适的函数。以下Python程序正是如此,对于从1到100的11的幂:
def mulBy11(num):
# Same length to ease addition.
ten = num + '0'
num = '0' + num
# Standard primary school algorithm for adding.
result = ''
carry = 0
for idx in range(len(ten)-1, -1, -1):
digit = int(ten[idx]) + int(num[idx]) + carry
carry = digit // 10
digit = digit % 10
result = str(digit) + result
if carry == 1:
result = '1' + result
return result
num = '1'
print('int oneCountInPowerOf11(int n) {')
print(' static int numOnes[] = {-1', end='')
for power in range(1,101):
num = mulBy11(num)
count = sum(1 for ch in num if ch == '1')
print(',%d' % count, end='')
print('};')
print(' if ((n < 0) || (n > sizeof(numOnes) / sizeof(*numOnes)))')
print(' return -1;')
print(' return numOnes[n];')
print('}')
此脚本输出的代码是:
int oneCountInPowerOf11(int n) {
static int numOnes[] = {-1,2,2,2,2,3,3,3,2,1,1,4,2,3,1,4,2,1,4,4,1,5,5,1,5,3,6,6,3,6,3,7,5,7,4,4,2,3,4,4,3,8,4,8,5,5,7,7,7,6,6,9,9,7,12,10,8,6,11,7,6,5,5,7,10,2,8,4,6,8,5,9,13,14,8,10,8,7,11,10,9,8,7,13,8,9,6,8,5,8,7,15,12,9,10,10,12,13,7,11,12};
if ((n < 0) || (n > sizeof(numOnes) / sizeof(*numOnes)))
return -1;
return numOnes[n];
}
当插入C程序时应该非常快。在我的系统上,Python代码本身(当你向1..1000
范围上升时)在大约0.6秒内运行,C代码在编译时,在0.07秒内找到111000中的数量。
这是我简洁的解决方案。
def count1s(N):
# When 11^(N-1) = result, 11^(N) = (10+1) * result = 10*result + result
result = 1
for i in range(N):
result += 10*result
# Now count 1's
count = 0
for ch in str(result):
if ch == '1':
count += 1
return count
在c#中:
private static void Main(string[] args)
{
var res = Elevento(1000);
var countOf1 = res.Select(x => int.Parse(x.ToString())).Count(s => s == 1);
Console.WriteLine(countOf1);
}
private static string Elevento(int n)
{
if (n == 0) return "1";
//Otherwise, n <- n * 10 + n, once for each level of power.
var num = "11";
while (n > 1)
{
n--;
// Make multiply by eleven easy.
var ten = num + "0";
num = "0" + num;
//Standard primary school algorithm for adding.
var newnum = "";
var carry = 0;
foreach (var dgt in Enumerable.Range(0, ten.Length).Reverse())
{
var res = int.Parse(ten[dgt].ToString()) + int.Parse(num[dgt].ToString()) + carry;
carry = res/10;
res = res%10;
newnum = res + newnum;
}
if (carry == 1)
newnum = "1" + newnum;
// Prepare for next multiplication.
num = newnum;
}
//There you go, 11^n as a string.
return num;
}
以上是关于计算11的1位数到N的幂的主要内容,如果未能解决你的问题,请参考以下文章