Pandas案例--人口密度分析
Posted zyyhxbs
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Pandas案例--人口密度分析相关的知识,希望对你有一定的参考价值。
- 需求:
- 导入文件,查看原始数据
- 将人口数据和各州简称数据进行合并
- 将合并的数据中重复的abbreviation列进行删除
- 查看存在缺失数据的列
- 找到有哪些state/region使得state的值为NaN,进行去重操作
- 为找到的这些state/region的state项补上正确的值,从而去除掉state这一列的所有NaN
- 合并各州面积数据areas
- 我们会发现area(sq.mi)这一列有缺失数据,找出是哪些行
- 去除含有缺失数据的行
- 找出2010年的全民人口数据
- 计算各州的人口密度
- 排序,并找出人口密度最高的五个州 df.sort_values()
import numpy as np
from pandas import DataFrame,Series
import pandas as pd
abb = pd.read_csv('./data/state-abbrevs.csv')
abb.head(2)
|
state |
abbreviation |
0 |
Alabama |
AL |
1 |
Alaska |
AK |
pop = pd.read_csv('./data/state-population.csv')
pop.head(2)
|
state/region |
ages |
year |
population |
0 |
AL |
under18 |
2012 |
1117489.0 |
1 |
AL |
total |
2012 |
4817528.0 |
area = pd.read_csv('./data/state-areas.csv')
area.head(2)
|
state |
area (sq. mi) |
0 |
Alabama |
52423 |
1 |
Alaska |
656425 |
# 将人口数据和各州简称数据进行合并
abb_pop = pd.merge(abb,pop,left_on='abbreviation',right_on='state/region',how='outer')
abb_pop.head(2)
|
state |
abbreviation |
state/region |
ages |
year |
population |
0 |
Alabama |
AL |
AL |
under18 |
2012 |
1117489.0 |
1 |
Alabama |
AL |
AL |
total |
2012 |
4817528.0 |
# 将合并的数据中重复的abbreviation列进行删除
abb_pop.drop(labels='abbreviation',axis=1,inplace=True)
abb_pop.head(2)
|
state |
state/region |
ages |
year |
population |
0 |
Alabama |
AL |
under18 |
2012 |
1117489.0 |
1 |
Alabama |
AL |
total |
2012 |
4817528.0 |
# 查看存在缺失数据的列
abb_pop.isnull().any(axis=0)
state True
state/region False
ages False
year False
population True
dtype: bool
# 找到有哪些state/region使得state的值为NaN,进行去重操作
# 1.state列中哪些值为空
abb_pop['state'].isnull()
0 False
1 False
2 False
...
2542 True
2543 True
Name: state, Length: 2544, dtype: bool
# 2.可以将step1中空对应的行数据取出(state中的空值对应的行数据)
abb_pop.loc[abb_pop['state'].isnull()]
|
state |
state/region |
ages |
year |
population |
2448 |
NaN |
PR |
under18 |
1990 |
NaN |
... |
... |
... |
... |
... |
... |
2543 |
NaN |
USA |
total |
2012 |
313873685.0 |
96 rows × 5 columns
# 3.将对应的行数据中指定的简称列取出
abb_pop.loc[abb_pop['state'].isnull()]['state/region'].unique()
array(['PR', 'USA'], dtype=object)
# 为找到的这些state/region的state项补上正确的值,从而去除掉state这一列的所有NaN
# 1.先将USA对应的state列中的空值定位到
abb_pop['state/region'] == 'USA'
0 False
1 False
2 False
3 False
...
2541 True
2542 True
2543 True
Name: state/region, Length: 2544, dtype: bool
# 2,将布尔值作为原数据的行索引,取出USA简称对应的行数据
abb_pop.loc[abb_pop['state/region'] == 'USA']
|
state |
state/region |
ages |
year |
population |
2496 |
NaN |
USA |
under18 |
1990 |
64218512.0 |
... |
... |
... |
... |
... |
... |
2542 |
NaN |
USA |
under18 |
2012 |
73708179.0 |
2543 |
NaN |
USA |
total |
2012 |
313873685.0 |
# 3.获取符合要求行数据的行索引
indexs = abb_pop.loc[abb_pop['state/region'] == 'USA'].index
# 4.将indexs这些行中的state列的值批量赋值成united states
abb_pop.loc[indexs,'state'] = 'United Status'
# 将PR对应的state列中的空批量赋值成 PUERTO RICO
abb_pop['state/region'] == 'PR'
abb_pop.loc[abb_pop['state/region'] == 'PR']
indexs = abb_pop.loc[abb_pop['state/region'] == 'PR'].index
abb_pop.loc[indexs,'state'] = 'PUERTO RICO'
# 合并各州面积数据areas
abb_pop_area = pd.merge(abb_pop,area,how='outer')
abb_pop_area.head(3)
|
state |
state/region |
ages |
year |
population |
area (sq. mi) |
0 |
Alabama |
AL |
under18 |
2012.0 |
1117489.0 |
52423.0 |
1 |
Alabama |
AL |
total |
2012.0 |
4817528.0 |
52423.0 |
2 |
Alabama |
AL |
under18 |
2010.0 |
1130966.0 |
52423.0 |
# 我们会发现area(sq.mi)这一列有缺失数据,找出是哪些行
abb_pop_area['area (sq. mi)'].isnull()
# 将空值对应的行数据取出
indexs = abb_pop_area.loc[abb_pop_area['area (sq. mi)'].isnull()].index
indexs
Int64Index([2448, 2449, 2450, 2451, 2452, 2453, 2454, 2455, 2456, 2457, 2458,
2459, 2460, 2461, 2462, 2463, 2464, 2465, 2466, 2467, 2468, 2469,
2470, 2471, 2472, 2473, 2474, 2475, 2476, 2477, 2478, 2479, 2480,
2481, 2482, 2483, 2484, 2485, 2486, 2487, 2488, 2489, 2490, 2491,
2492, 2493, 2494, 2495, 2496, 2497, 2498, 2499, 2500, 2501, 2502,
2503, 2504, 2505, 2506, 2507, 2508, 2509, 2510, 2511, 2512, 2513,
2514, 2515, 2516, 2517, 2518, 2519, 2520, 2521, 2522, 2523, 2524,
2525, 2526, 2527, 2528, 2529, 2530, 2531, 2532, 2533, 2534, 2535,
2536, 2537, 2538, 2539, 2540, 2541, 2542, 2543],
dtype='int64')
# 去除含有缺失数据的行
abb_pop_area.drop(labels=indexs,axis=0,inplace=True)
# 找出2010年的全民人口数据 条件查询
abb_pop_area.query('year == 2010 & ages == "total"')
|
state |
state/region |
ages |
year |
population |
area (sq. mi) |
3 |
Alabama |
AL |
total |
2010.0 |
4785570.0 |
52423.0 |
91 |
Alaska |
AK |
total |
2010.0 |
713868.0 |
656425.0 |
101 |
Arizona |
AZ |
total |
2010.0 |
6408790.0 |
114006.0 |
189 |
Arkansas |
AR |
total |
2010.0 |
2922280.0 |
53182.0 |
197 |
California |
CA |
total |
2010.0 |
37333601.0 |
163707.0 |
...
...
2405 |
Wyoming |
WY |
total |
2010.0 |
564222.0 |
97818.0 |
# 计算各州的人口密度
abb_pop_area['midu'] = abb_pop_area['population'] / abb_pop_area['area (sq. mi)']
abb_pop_area.head(2)
|
state |
state/region |
ages |
year |
population |
area (sq. mi) |
midu |
0 |
Alabama |
AL |
under18 |
2012.0 |
1117489.0 |
52423.0 |
21.316769 |
1 |
Alabama |
AL |
total |
2012.0 |
4817528.0 |
52423.0 |
91.897221 |
# 排序,并找出人口密度最高的五个州 df.sort_values()
abb_pop_area.sort_values(by='midu',axis=0,ascending=False).head(5)
|
state |
state/region |
ages |
year |
population |
area (sq. mi) |
midu |
391 |
District of Columbia |
DC |
total |
2013.0 |
646449.0 |
68.0 |
9506.602941 |
385 |
District of Columbia |
DC |
total |
2012.0 |
633427.0 |
68.0 |
9315.102941 |
387 |
District of Columbia |
DC |
total |
2011.0 |
619624.0 |
68.0 |
9112.117647 |
431 |
District of Columbia |
DC |
total |
1990.0 |
605321.0 |
68.0 |
8901.779412 |
389 |
District of Columbia |
DC |
total |
2010.0 |
605125.0 |
68.0 |
8898.897059 |
abb_pop_area.groupby(by='state')['area (sq. mi)'].max().sort_values(ascending=False).head(5)
state
Alaska 656425.0
Texas 268601.0
California 163707.0
Montana 147046.0
New Mexico 121593.0
Name: area (sq. mi), dtype: float64
以上是关于Pandas案例--人口密度分析的主要内容,如果未能解决你的问题,请参考以下文章
ArcGIS实验教程——实验四十二:ArcGIS密度分析(核密度点密度线密度)
数据分析入门——美国各州人口分析
各阶段缺陷检出密度的统计分析案例
大数据分析案例-基于随机森林算法构建人口普查分析模型
人口分析案例
检索人口密度数据