使用Pandas读取大型Excel文件
Posted hankleo
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用Pandas读取大型Excel文件相关的知识,希望对你有一定的参考价值。
import os
import pandas as pd
HERE = os.path.abspath(os.path.dirname(__file__))
DATA_DIR = os.path.abspath(os.path.join(HERE, '..', 'data'))
def make_df_from_excel(file_name, nrows):
"""Read from an Excel file in chunks and make a single DataFrame.
Parameters
----------
file_name : str
nrows : int
Number of rows to read at a time. These Excel files are too big,
so we can't read all rows in one go.
"""
file_path = os.path.abspath(os.path.join(DATA_DIR, file_name))
xl = pd.ExcelFile(file_path)
# In this case, there was only a single Worksheet in the Workbook.
sheetname = xl.sheet_names[0]
# Read the header outside of the loop, so all chunk reads are
# consistent across all loop iterations.
df_header = pd.read_excel(file_path, sheetname=sheetname, nrows=1)
# print(f"Excel file: {file_name} (worksheet: {sheetname})")
print(f"文件名:{file_name}")
print(f"工作表:{sheetname}")
chunks = []
i_chunk = 0
# The first row is the header. We have already read it, so we skip it.
skiprows = 1
while True:
df_chunk = pd.read_excel(
file_path, sheetname=sheetname,
nrows=nrows, skiprows=skiprows, header=None)
skiprows += nrows
# When there is no data, we know we can break out of the loop.
if not df_chunk.shape[0]:
break
else:
# print(f" - chunk {i_chunk} ({df_chunk.shape[0]} rows)")
print(f"行数:{df_chunk.shape[0]}")
chunks.append(df_chunk)
i_chunk += 1
df_chunks = pd.concat(chunks)
# Rename the columns to concatenate the chunks with the header.
columns = {i: col for i, col in enumerate(df_header.columns.tolist())}
df_chunks.rename(columns=columns, inplace=True)
df = pd.concat([df_header, df_chunks])
return df
if __name__ == '__main__':
df = make_df_from_excel('/Users/mac/Desktop/Data/demo.xlsx', nrows=1000000)
from: cnblogs.com/everfight/p/pandas_read_large_number.html
以上是关于使用Pandas读取大型Excel文件的主要内容,如果未能解决你的问题,请参考以下文章
Pandas 无法读取 S3 excel 文件。错误:无法确定 Excel 文件格式
在 Pandas 中连接 Excel 文件表,以 CSV 格式每 1 行将大型 Pandas 数据框导出到新的 Excel 文件。自动化?