股票分析案例

Posted zyyhxbs

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了股票分析案例相关的知识,希望对你有一定的参考价值。

使用tushare包获取某股票的历史行情数据

  • pip install tushare
import tushare as ts
import pandas as pd
# 茅台的数据
maotai = ts.get_k_data(code='600519',start='1900-01-01')
maotai.head()
date open close high low volume code
0 2001-08-27 5.392 5.554 5.902 5.132 406318.00 600519
1 2001-08-28 5.467 5.759 5.781 5.407 129647.79 600519
2 2001-08-29 5.777 5.684 5.781 5.640 53252.75 600519
3 2001-08-30 5.668 5.796 5.860 5.624 48013.06 600519
4 2001-08-31 5.804 5.782 5.877 5.749 23231.48 600519
# 存储本地
maotai.to_csv('./maotai.csv')
# 从本地读取数据
# index_col将哪一列['date']作为原数据的行索引
# parse_dates: 将哪些列的数据转换为date类型
# 将date的类型转成时间类型然后将其作为原数据的行索引
df = pd.read_csv('./maotai.csv', index_col='date', parse_dates=['date'])
df.drop(labels='Unnamed: 0',axis=1,inplace=True)  # 删除多余的一列 inplace表示,是否修改原数据
df.head()
open close high low volume code
date
2001-08-27 5.392 5.554 5.902 5.132 406318.00 600519
2001-08-28 5.467 5.759 5.781 5.407 129647.79 600519
2001-08-29 5.777 5.684 5.781 5.640 53252.75 600519
2001-08-30 5.668 5.796 5.860 5.624 48013.06 600519
2001-08-31 5.804 5.782 5.877 5.749 23231.48 600519
# 输出该股票所有收盘比开盘上涨3%以上的日期。
# (收盘-开盘)/开盘 > 0.03
(df['close'] - df['open']) / df['open'] > 0.03
# 将True对应的行数据取出
df.loc[(df['close'] - df['open']) / df['open'] > 0.03]
# 取行索引(时间)
df.loc[(df['close'] - df['open']) / df['open'] > 0.03].index
DatetimeIndex(['2001-08-27', '2001-08-28', '2001-09-10', '2001-12-21',
               '2002-01-18', '2002-01-31', '2003-01-14', '2003-10-29',
               '2004-01-05', '2004-01-14',
               ...
               '2019-03-01', '2019-03-18', '2019-04-10', '2019-04-16',
               '2019-05-10', '2019-05-15', '2019-06-11', '2019-06-20',
               '2019-09-12', '2019-09-18'],
              dtype='datetime64[ns]', name='date', length=303, freq=None)
# 输出该股票所有开盘比前日收盘跌幅超过2%的日期。
# (开盘-前日收盘)/前日收盘  < -0.02
# shift(1): 向下移动一行
(df['open'] - df['close'].shift(1)) / df['close'].shift(1) < -0.02
df.loc[(df['open'] - df['close'].shift(1)) / df['close'].shift(1) < -0.02]
df.loc[(df['open'] - df['close'].shift(1)) / df['close'].shift(1) < -0.02].index
DatetimeIndex(['2001-09-12', '2002-06-26', '2002-12-13', '2004-07-01',
               '2004-10-29', '2006-08-21', '2006-08-23', '2007-01-25',
               '2007-02-01', '2007-02-06', '2007-03-19', '2007-05-21',
               '2007-05-30', '2007-06-05', '2007-07-27', '2007-09-05',
               '2007-09-10', '2008-03-13', '2008-03-17', '2008-03-25',
               '2008-03-27', '2008-04-22', '2008-04-23', '2008-04-29',
               '2008-05-13', '2008-06-10', '2008-06-13', '2008-06-24',
               '2008-06-27', '2008-08-11', '2008-08-19', '2008-09-23',
               '2008-10-10', '2008-10-15', '2008-10-16', '2008-10-20',
               '2008-10-23', '2008-10-27', '2008-11-06', '2008-11-12',
               '2008-11-20', '2008-11-21', '2008-12-02', '2009-02-27',
               '2009-03-25', '2009-08-13', '2010-04-26', '2010-04-30',
               '2011-08-05', '2012-03-27', '2012-08-10', '2012-11-22',
               '2012-12-04', '2012-12-24', '2013-01-16', '2013-01-25',
               '2013-09-02', '2014-04-25', '2015-01-19', '2015-05-25',
               '2015-07-03', '2015-07-08', '2015-07-13', '2015-08-24',
               '2015-09-02', '2015-09-15', '2017-11-17', '2018-02-06',
               '2018-02-09', '2018-03-23', '2018-03-28', '2018-07-11',
               '2018-10-11', '2018-10-24', '2018-10-25', '2018-10-29',
               '2018-10-30', '2019-05-06', '2019-05-08'],
              dtype='datetime64[ns]', name='date', freq=None)
#假如我从2010年1月1日开始,每月第一个交易日买入1手股票,每年最后一个交易日卖出所有股票,到今天为止,我的收益如何?
df_2010 = df['2010':'2019']
  • 基于开盘价进行股票的买卖
  • 买股票的时机:
    • 每月的第一个交易日买入一手(100股)股票
    • 一个完整的年会买入12次股票共计1200股
  • 卖股票的时机:
    • 每年的最后一个交易日卖出所有(1200股)的股票
    • 一共可以卖9次股票
  • 注意:19年只可以买入不可以卖出,最后剩余的不能卖出的1000股股票是需要计算到总收益中

  • 数据的重新取样resample()

# 买入股票花费的钱数
# df_2010.resample('M').first() 取出每月的第一天为索引的行
df_monthly = df_2010.resample('M').first()
cost_money = df_monthly['open'].sum() * 100
cost_money
3568986.0999999996
# 卖出股票收到多少钱
# df_2010.resample('A').last()取出每年的最后一天为索引的行
# 并且排除2019年
df_yearly = df_2010.resample('A').last()[:-1]
df_yearly
open close high low volume code
date
2010-12-31 117.103 118.469 118.701 116.620 46084.0 600519
2011-12-31 138.039 138.468 139.600 136.105 29460.0 600519
2012-12-31 155.208 152.087 156.292 150.144 51914.0 600519
2013-12-31 93.188 96.480 97.179 92.061 57546.0 600519
2014-12-31 157.642 161.056 161.379 157.132 46269.0 600519
2015-12-31 207.487 207.458 208.704 207.106 19673.0 600519
2016-12-31 317.239 324.563 325.670 317.239 34687.0 600519
2017-12-31 707.948 687.725 716.329 681.918 76038.0 600519
2018-12-31 563.300 590.010 596.400 560.000 63678.0 600519
last_price = df_2010['close'][-1]  # 昨天的收盘价
recv_monry = df_yearly['open'].sum() * 1200 + last_price * 1000
recv_monry - cost_money
590598.6999999997

以上是关于股票分析案例的主要内容,如果未能解决你的问题,请参考以下文章

案例Python金融分析-CAPM模型对股票进行分析

用python的tushare模块分析股票案例(python3经典编程案例)

用python的tushare模块分析股票案例(python3经典编程案例)

股票技术分析中DIFF是啥意思?

股票交易数据采集+数据可视化(一个朴素无华的Python爬虫+可视化案例,附代全部代码)

JavaScript笔试题(js高级代码片段)