双目成像的简单推导

Posted jymg

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了双目成像的简单推导相关的知识,希望对你有一定的参考价值。

双目成像简单分析

1. 双目视差推导(对14讲上内容的一些深入解释)

对于十四讲中的推导有些疑惑,给出了结果,但是推导部分感觉不太严谨,所以简单推了一下。

设空间3D点(P):

  • 在左右相机上对应的像素坐标为(u_L,u_R)(图像坐标系,原点在左上角)单位: pixel

    同时假设(u_L)在左相机中心点右侧,(u_R)在右相机中心点左侧(仅仅便于推导,实际情况结果都一样)

  • 深度为(d),单位: mm

  • 双目基线长度(b),单位: mm

  • 相机传感器像素与mm转换系数(s),单位: mm/pixel

  • 相机焦距(f_x),单位: pixel

  • 图像中心点横坐标为(w)

    这里取的是像素焦距,为什么是(f_x),请看第2节分析

利用相似三角形关系(图见十四讲P91),可以得到:
[ frac{z-f_xs}{z} = frac{b-(u_L-w+w-u_R)s}{b} \Rightarrow bz-bf_xs =bz-zs(u_L-u_R) \Rightarrow z=frac{bf_x}{u_L-u_R} \Rightarrow z = frac{bf_x}{d} \text{其中}:d=u_L-u_R ]
称为视差,单位为像素,最小值为一个像素,所以深度的最大值为:(bf_x)

2. 使用(f_x)的原因以及双目成像完整推导

相机成像模型如下:

  • (u_L,v_L,u_R,v_R): 单位像素
  • (alpha,eta): 传感器单位长度上像素个数(pixel/mm)
  • (f):物理焦距,单位mm

对于同一个3D空间点(P=(X,Y,Z)^T),其在两个相机上的成像模型为:

左目:
[ segin{pmatrix} u_Lv_L 1 end{pmatrix} = egin{pmatrix} alpha & 0 &c_x & eta & c_y & 0 & 1 end{pmatrix} egin{pmatrix} f & 0&0&0 &f &0 &0 & 0 & 1 & 0 end{pmatrix} egin{pmatrix} X\Y\Z\1 end{pmatrix} ]
右目:
[ segin{pmatrix} u_Rv_R1 end{pmatrix} = egin{pmatrix} alpha & 0 &c_x & eta & c_y & 0 & 1 end{pmatrix} egin{pmatrix} f & 0&0&0 &f &0 &0 & 0 & 1 & 0 end{pmatrix} egin{pmatrix} X-b\Y\Z\1 end{pmatrix} ]

这里假设两个相机的内参相同,并且已经进行过双目校正,如果完整考虑整个模型,只需替换相关参数继续推导即可

由于进行过双目校正,所以只需要考虑(u_L,u_R)关系即可:
[ u_L = alpha f frac{X}{Z}+c_x u_R= alpha ffrac{X-b}{Z}+c_x \alpha f Rightarrow f_x ]
两式相减可以得到:
[ Z = frac{bf_x}{u_L-u_R} ]
与前面利用几何关系推导结果相同,并且在实际代码中使用(f_x)的原因也清楚了。

以上是关于双目成像的简单推导的主要内容,如果未能解决你的问题,请参考以下文章

摄像头测距

技术流派教你提高双目立体视觉系统的精度!

双目标定与三维计算:从理论到OpenCV实践

单目相机双目相机和RGB-D相机学习笔记(一些视频和博文网址)

相机标定与三维重建原理及实现学习笔记1——相机模型数学推导详解

RGB相机深度相机以及LiDAR成像原理