pytoch-基本卷积网络结构, 参数提取,参数初始化
Posted my-love-is-python
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pytoch-基本卷积网络结构, 参数提取,参数初始化相关的知识,希望对你有一定的参考价值。
基本卷积网络结构net.py
from torch import nn class SimpleCNN(nn.Module): def __init__(self): super(SimpleCNN, self).__init__() layer1 = nn.Sequential() # 将网络模型进行添加 layer1.add_module(‘conv1‘, nn.Conv2d(3, 32, 3, 1, padding=1)) # nn.Conv layer1.add_module(‘relu1‘, nn.ReLU(True)) layer1.add_module(‘pool1‘, nn.MaxPool2d(2, 2)) self.layer1 = layer1 layer2 = nn.Sequential() layer2.add_module(‘conv2‘, nn.Conv2d(32, 64, 3, 1, padding=1)) layer2.add_module(‘relu2‘, nn.ReLU(True)) layer2.add_module(‘pool2‘, nn.MaxPool2d(2, 2)) self.layer2 = layer2 layer3 = nn.Sequential() layer3.add_module(‘conv3‘, nn.Conv2d(64, 128, 3, 1, padding=1)) layer3.add_module(‘relu3‘, nn.ReLU(True)) layer3.add_module(‘pool3‘, nn.MaxPool2d(2, 2)) self.layer3 = layer3 layer4 = nn.Sequential() layer4.add_module(‘fc1‘, nn.Linear(2048, 512)) layer4.add_module(‘fc_relu1‘, nn.ReLU(True)) layer4.add_module(‘fc2‘, nn.Linear(512, 64)) layer4.add_module(‘fc_relu2‘, nn.ReLU(True)) layer4.add_module(‘fc3‘, nn.Linear(64, 10)) self.layer4 = layer4 def forward(self, x): conv1 = self.layer1(x) conv2 = self.layer2(conv1) conv3 = self.layer3(conv2) fc_input = conv3.view(conv3.size(0), -1) fc_out = self.layer4(fc_input) return fc_out model = SimpleCNN() # print(model) # 打印输出网络结构
提取前两层的网络结构
new_model = nn.Sequential(*list(model.children())[:2]) # 提取前两层的网络结构, 构造nn.Sequential网络串接, * 表示将里面的内容一个个传进去
提取所有层的网络结构
conv_model = nn.Sequential() # 提取所有的卷积层操作, model.name_modules() 提取所有层的网络结构 for name, layer in model.named_modules(): if isinstance(layer, nn.Conv2d): name = name.replace(‘.‘, ‘_‘) conv_model.add_module(name, layer) print(conv_model)
以上是关于pytoch-基本卷积网络结构, 参数提取,参数初始化的主要内容,如果未能解决你的问题,请参考以下文章