关于bert+lstm+crf实体识别训练数据的构建

Posted little-horse

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了关于bert+lstm+crf实体识别训练数据的构建相关的知识,希望对你有一定的参考价值。

一.在实体识别中,bert+lstm+crf也是近来常用的方法。这里的bert可以充当固定的embedding层,也可以用来和其它模型一起训练fine-tune。大家知道输入到bert中的数据需要一定的格式,如在单个句子的前后需要加入"[CLS]"和“[SEP]”,需要mask等。下面构造训练集并利用albert抽取句子的embedding。

  1 import torch
  2 from configs.base import config
  3 from model.modeling_albert import BertConfig, BertModel
  4 from model.tokenization_bert import BertTokenizer
  5 from keras.preprocessing.sequence import pad_sequences
  6 from torch.utils.data import TensorDataset, DataLoader, RandomSampler
  7 
  8 import os
  9 
 10 device = torch.device(cuda if torch.cuda.is_available()  else "cpu")
 11 MAX_LEN = 10
 12 if __name__ == __main__:
 13     bert_config = BertConfig.from_pretrained(str(config[albert_config_path]), share_type=all)
 14     base_path = os.getcwd()
 15     VOCAB = base_path + /configs/vocab.txt  # your path for model and vocab
 16     tokenizer = BertTokenizer.from_pretrained(VOCAB)
 17 
 18     # encoder text
 19     tag2idx={[SOS]:101, [EOS]:102, [PAD]:0, B_LOC:1, I_LOC:2, O:3}
 20     sentences = [我是中华人民共和国国民, 我爱祖国]
 21     tags = [O O B_LOC I_LOC I_LOC I_LOC I_LOC I_LOC O O, O O O O]
 22 
 23     tokenized_text = [tokenizer.tokenize(sent) for sent in sentences]
 24     #利用pad_sequence对序列长度进行截断和padding
 25     input_ids = pad_sequences([tokenizer.convert_tokens_to_ids(txt) for txt in tokenized_text], #没法一条一条处理,只能2-d的数据,即多于一条样本,但是如果全部加载到内存是不是会爆
 26                               maxlen=MAX_LEN-2,
 27                               truncating=post,
 28                               padding=post,
 29                               value=0)
 30 
 31     tag_ids = pad_sequences([[tag2idx.get(tok) for tok in tag.split()] for tag in tags],
 32                             maxlen=MAX_LEN-2,
 33                             padding="post",
 34                             truncating="post",
 35                             value=0)
 36 
 37     #bert中的句子前后需要加入[CLS]:101和[SEP]:102
 38     input_ids_cls_sep = []
 39     for input_id in input_ids:
 40         linelist = []
 41         linelist.append(101)
 42         flag = True
 43         for tag in input_id:
 44             if tag > 0:
 45                 linelist.append(tag)
 46             elif tag == 0 and flag:
 47                 linelist.append(102)
 48                 linelist.append(tag)
 49                 flag = False
 50             else:
 51                 linelist.append(tag)
 52         if tag > 0:
 53             linelist.append(102)
 54         input_ids_cls_sep.append(linelist)
 55 
 56     tag_ids_cls_sep = []
 57     for tag_id in tag_ids:
 58         linelist = []
 59         linelist.append(101)
 60         flag = True
 61         for tag in tag_id:
 62             if tag > 0:
 63                 linelist.append(tag)
 64             elif tag == 0 and flag:
 65                 linelist.append(102)
 66                 linelist.append(tag)
 67                 flag = False
 68             else:
 69                 linelist.append(tag)
 70         if tag > 0:
 71             linelist.append(102)
 72         tag_ids_cls_sep.append(linelist)
 73 
 74     attention_masks = [[int(tok > 0) for tok in line] for line in input_ids_cls_sep]
 75 
 76     print(---------------------------)
 77     print(input_ids:{}.format(input_ids_cls_sep))
 78     print(tag_ids:{}.format(tag_ids_cls_sep))
 79     print(attention_masks:{}.format(attention_masks))
 80 
 81 
 82     # input_ids = torch.tensor([tokenizer.encode(‘我 是 中 华 人 民 共 和 国 国 民‘, add_special_tokens=True)]) #为True则句子首尾添加[CLS]和[SEP]
 83     # print(‘input_ids:{}, size:{}‘.format(input_ids, len(input_ids)))
 84     # print(‘attention_masks:{}, size:{}‘.format(attention_masks, len(attention_masks)))
 85 
 86     inputs_tensor = torch.tensor(input_ids_cls_sep)
 87     tags_tensor = torch.tensor(tag_ids_cls_sep)
 88     masks_tensor = torch.tensor(attention_masks)
 89 
 90     train_data = TensorDataset(inputs_tensor, tags_tensor, masks_tensor)
 91     train_sampler = RandomSampler(train_data)
 92     train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=2)
 93 
 94     model = BertModel.from_pretrained(config[bert_dir],config=bert_config)
 95     model.to(device)
 96     model.eval()
 97     with torch.no_grad():
 98         ‘‘‘
 99         note:
100         一.
101         如果设置:"output_hidden_states":"True"和"output_attentions":"True"
102         输出的是: 所有层的 sequence_output, pooled_output, (hidden_states), (attentions)
103         则 all_hidden_states, all_attentions = model(input_ids)[-2:]
104 
105         二.
106         如果没有设置:output_hidden_states和output_attentions
107         输出的是:最后一层  --> (output_hidden_states, output_attentions)
108        ‘‘‘
109         for index, batch in enumerate(train_dataloader):
110             batch = tuple(t.to(device) for t in batch)
111             b_input_ids, b_input_mask, b_labels = batch
112             last_hidden_state = model(input_ids = b_input_ids,attention_mask = b_input_mask)
113             print(len(last_hidden_state))
114             all_hidden_states, all_attentions = last_hidden_state[-2:] #这里获取所有层的hidden_satates以及attentions
115             print(all_hidden_states[-2].shape)#倒数第二层hidden_states的shape
         print(all_hidden_states[-2])

二.打印结果

input_ids:[[101, 2769, 3221, 704, 1290, 782, 3696, 1066, 1469, 102], [101, 2769, 4263, 4862, 1744, 102, 0, 0, 0, 0]]
tag_ids:[[101, 3, 3, 1, 2, 2, 2, 2, 2, 102], [101, 3, 3, 3, 3, 102, 0, 0, 0, 0]]
attention_masks:[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]]
4
torch.Size([2, 10, 768])
tensor([[[-1.1074, -0.0047,  0.4608,  ..., -0.1816, -0.6379,  0.2295],
         [-0.1930, -0.4629,  0.4127,  ..., -0.5227, -0.2401, -0.1014],
         [ 0.2682, -0.6617,  0.2744,  ..., -0.6689, -0.4464,  0.1460],
         ...,
         [-0.1723, -0.7065,  0.4111,  ..., -0.6570, -0.3490, -0.5541],
         [-0.2028, -0.7025,  0.3954,  ..., -0.6566, -0.3653, -0.5655],
         [-0.2026, -0.6831,  0.3778,  ..., -0.6461, -0.3654, -0.5523]],

        [[-1.3166, -0.0052,  0.6554,  ..., -0.2217, -0.5685,  0.4270],
         [-0.2755, -0.3229,  0.4831,  ..., -0.5839, -0.1757, -0.1054],
         [-1.4941, -0.1436,  0.8720,  ..., -0.8316, -0.5213, -0.3893],
         ...,
         [-0.7022, -0.4104,  0.5598,  ..., -0.6664, -0.1627, -0.6270],
         [-0.7389, -0.2896,  0.6083,  ..., -0.7895, -0.2251, -0.4088],
         [-0.0351, -0.9981,  0.0660,  ..., -0.4606,  0.4439, -0.6745]]])

以上是关于关于bert+lstm+crf实体识别训练数据的构建的主要内容,如果未能解决你的问题,请参考以下文章

用CRF做命名实体识别

[语音识别] 文本加标点--准备训练数据 (适用于LSTM与BERT)

Bert加bilstm和crf做ner的意义

用 Keras+LSTM+CRF 的实践命名实体识别NER

快递单信息抽取基于ERNIE1.0至ErnieGram + CRF预训练模型

命名实体识别常用算法及工程实现