CSPS模拟 79

Posted yxsplayxs

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CSPS模拟 79相关的知识,希望对你有一定的参考价值。

    T1 建一颗新树,倍增

    T2

      WARNING:竞赛图如果有环,则最小环一定为三元环

      (发现这个结论的这把都稳了)

      然后三元环计数,发现部分分都是为了审出题意但是不会正解的人设的..

      由于对于任意一种方案,把它所有边反向不会改变他三元环的数量,所以可以直接考虑无向三元环的情况

      考虑容斥求出期望数量,首先所有可能的数目是$C_n^3$

      会有一些不出现的,具体来说其中一定会有且只有一个点的出度为2

      那么 存在一个点和两条出边的一个组合 -> 存在一个不出现的三元环

      计算每个点出边的期望数目,求出组合数,用$C_n^3$减去。

      三元环的问题已经考过几次了,还是没审出来..

    T3

      先把他弄成更复杂的柿子:

      $C_{a+b+c+d}^{a+c}=sum limits_{t=0}^{a+b} C_{a+b}^t * C_{c+d}^{a+c-t}$

      也即一共$a+c$个物品,分配在$a+b+c+d$个位置,然后枚举在左半部分$a+b$的位置上放多少个

      然后我们希望两个组合数中的量互不相关,那么改变t的枚举范围

      $sumlimits_{t=-a}^b C_{a+b}^{a+t} * C_{c+d}^{c-t}$

      题目暗示了可以枚举值域(又没看出来)所以对每个t维护一个sum然后暴力统计答案

      关键在改变t的枚举范围...

以上是关于CSPS模拟 79的主要内容,如果未能解决你的问题,请参考以下文章

CSPS模拟 95

csps模拟测试92反思

CSPS模拟 65

CSPS模拟 57

CSPS模拟 58

CSPS模拟 60