pytorch之 classification
Posted dhname
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pytorch之 classification相关的知识,希望对你有一定的参考价值。
1 import torch 2 import torch.nn.functional as F 3 import matplotlib.pyplot as plt 4 5 # torch.manual_seed(1) # reproducible 6 7 # make fake data 8 n_data = torch.ones(100, 2) 9 x0 = torch.normal(2*n_data, 1) # class0 x data (tensor), shape=(100, 2) 10 y0 = torch.zeros(100) # class0 y data (tensor), shape=(100, 1) 11 x1 = torch.normal(-2*n_data, 1) # class1 x data (tensor), shape=(100, 2) 12 y1 = torch.ones(100) # class1 y data (tensor), shape=(100, 1) 13 x = torch.cat((x0, x1), 0).type(torch.FloatTensor) # shape (200, 2) FloatTensor = 32-bit floating 14 y = torch.cat((y0, y1), ).type(torch.LongTensor) # shape (200,1) LongTensor = 64-bit integer 15 16 # The code below is deprecated in Pytorch 0.4. Now, autograd directly supports tensors 17 # x, y = Variable(x), Variable(y) 18 19 # plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap=‘RdYlGn‘) 20 # plt.show() 21 22 23 class Net(torch.nn.Module): 24 def __init__(self, n_feature, n_hidden, n_output): 25 super(Net, self).__init__() 26 self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer 27 self.out = torch.nn.Linear(n_hidden, n_output) # output layer 28 29 def forward(self, x): 30 x = F.relu(self.hidden(x)) # activation function for hidden layer 31 x = self.out(x) 32 return x 33 34 net = Net(n_feature=2, n_hidden=10, n_output=2) # define the network 35 print(net) # net architecture 36 37 optimizer = torch.optim.SGD(net.parameters(), lr=0.02) 38 loss_func = torch.nn.CrossEntropyLoss() # the target label is NOT an one-hotted 39 40 plt.ion() # something about plotting 41 42 for t in range(100): 43 out = net(x) # input x and predict based on x 44 loss = loss_func(out, y) # must be (1. nn output, 2. target), the target label is NOT one-hotted 45 46 optimizer.zero_grad() # clear gradients for next train 47 loss.backward() # backpropagation, compute gradients 48 optimizer.step() # apply gradients 49 50 if t % 2 == 0: 51 # plot and show learning process 52 plt.cla() 53 prediction = torch.max(out, 1)[1] 54 pred_y = prediction.data.numpy() 55 target_y = y.data.numpy() 56 plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap=‘RdYlGn‘) 57 accuracy = float((pred_y == target_y).astype(int).sum()) / float(target_y.size) 58 plt.text(1.5, -4, ‘Accuracy=%.2f‘ % accuracy, fontdict={‘size‘: 20, ‘color‘: ‘red‘}) 59 plt.pause(0.1) 60 61 plt.ioff() 62 plt.show()
以上是关于pytorch之 classification的主要内容,如果未能解决你的问题,请参考以下文章
《计算机视觉和图像处理简介 - 中英双语版》:基于PyTorch Softmax 进行 MNIST 手写数字分类Digit Classification with Softmax
训练技巧详解含有部分代码Bag of Tricks for Image Classification with Convolutional Neural Networks
Pytorch文本分类(imdb数据集),含DataLoader数据加载,最优模型保存
MachineLear之Logistic regression classifiers 之 One-vs-all Classification