Pairs Forming LCM (LightOJ - 1236)简单数论质因数分解算术基本定理(未完成)

Posted satchelpp

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Pairs Forming LCM (LightOJ - 1236)简单数论质因数分解算术基本定理(未完成)相关的知识,希望对你有一定的参考价值。

Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)


题目描述

Find the result of the following code:

long long pairsFormLCM( int n ) {
    long long res = 0;
    for( int i = 1; i <= n; i++ )
        for( int j = i; j <= n; j++ )
           if( lcm(i, j) == n ) res++; // lcm means least common multiple
    return res;
}

A straight forward implementation of the code may time out. If you analyze the code, you will find that the code actually counts the number of pairs (i, j) for which lcm(i, j) = n and (i ≤ j).
Input

Input starts with an integer T (≤ 200), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 1014).

Output

For each case, print the case number and the value returned by the function 'pairsFormLCM(n)'.

Sample Input

15

2

3

4

6

8

10

12

15

18

20

21

24

25

27

29

Sample Output

Case 1: 2

Case 2: 2

Case 3: 3

Case 4: 5

Case 5: 4

Case 6: 5

Case 7: 8

Case 8: 5

Case 9: 8

Case 10: 8

Case 11: 5

Case 12: 11

Case 13: 3

Case 14: 4

Case 15: 2

题意

给定(n)
(sum_{i = 1}^{n} sum_{j = i}^{n} [lcm(i, j) = n])的值。


解析


通过代码

/*
Problem
    LightOJ - 1236
Status
    Accepted
Time
    410ms
Memory
    19664kB
Length
    1299
Lang
    C++
Submitted
    2019-11-25 15:30:08
Shared
    
RemoteRunId
    1640611
*/

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const int MAXN = 1e7 + 50;

bool vis[MAXN];
int prime[MAXN / 10], p[MAXN / 10], m = 0, cnt;

void fill_0()
{
    for(int i = 1; i <= cnt; i ++)
        p[i] = 0;
    return;
}
void get_prime()                //线性筛,筛出1e7以内全部质数.
{
    vis[1] = 1;

    for(int i = 2; i <= int(1e7 + 5); i ++){
        if(!vis[i])
            prime[++ m] = i;

        for(int j = 1; j <= m && i * prime[j] <= int(1e7 + 5); j ++){
            vis[i * prime[j]] = 1;

            if(i % prime[j] == 0)
                break;
        }
    }

    return;
}
void get_fact(ll x)
{
    fill_0();           //将p数组归零.
    cnt = 0;
    for(int i = 1; i <= m && 1ll * prime[i] * prime[i] <= x; i ++){ //以下求得一个数的质因数分解每个质数的幂次.
        if(x % prime[i] == 0){

            cnt ++;
            while(x % prime[i] == 0){
            
                p[cnt] ++;
                x /= prime[i];
                
            }

        }
    }

    if(x != 1)
        p[++ cnt] = 1;

    return;
}

ll work()
{
    ll res = 1;

    for(int i = 1; i <= cnt; i ++)
        res *= 1ll * (2 * p[i] + 1);

    return (res + 1) >> 1;
}
int main()
{
    get_prime();
    
    int times, _case = 0;

    scanf("%d", &times);

    while(times --){

        ll x;
        scanf("%lld", &x);

        get_fact(x);

        printf("Case %d: %lld
", ++ _case, work());
    }

    return 0;
}

以上是关于Pairs Forming LCM (LightOJ - 1236)简单数论质因数分解算术基本定理(未完成)的主要内容,如果未能解决你的问题,请参考以下文章

1236 - Pairs Forming LCM

H - Pairs Forming LCM(唯一分解定理)

LightOJ 1236 Pairs Forming LCM(算数基本定理)

LightOJ 1236 - Pairs Forming LCM(素因子分解)

Pairs Forming LCM (LightOJ - 1236)简单数论质因数分解算术基本定理(未完成)

1236 - Pairs Forming LCM -- LightOj1236 (LCM) 给你一个数n,让你求1到n之间的数(a,b && a<=b)两个数的最小公倍数等