并不对劲的复健训练-CF1187D

Posted xzyf

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了并不对劲的复健训练-CF1187D相关的知识,希望对你有一定的参考价值。

题目大意

有两个长度为(n)的序列(a_1,...,a_n)(b_1,...,b_n)($a,bleq nleq 3 imes 10^5 ()。一次操作是选取)[l,r](,将)a_l,...,a_r$排序。问能否通过若干次操作把 (a_1,...,a_n) 变得和 (b_1,...,b_n) 一样。

题解

首先,如果(a,b)中每个数的出现次数不一样,那么一定不能。
其余的部分的问题在于能不能通过交换(a)中一些数的位置使(a)变得和(b)一样。
(a)中两个位置(i,j)的数在(b)中的位置为(i',j')
(i<j)(i'>j')时,要想使(a,b)相同必须交换(i,j)的位置,一定存在一次操作使([i,j]in[l,r])
(a_i<a_j)(i'>j')时,如果存在一次操作([i,j]in[l,r]),那么(a_i)就会被换到(a_j)左边,而且没法再换回来了,所以此时对于任意一次操作都没有([min(i,j),max(i,j)]in[l,r])
所以当存在(a_i<a_j)(i<j)(i'<j')时,一定没有合法解。
想要判断这部分,可以从左往右扫序列(b),对于(b_i),设(b_i)(a)中目前第一次出现的位置为(p(i)),若(min{a_j|jin[1,p(i)]}<b_i)那么就没有合法解;反之,将(a_{p(i)})改为(+inf),继续判断剩下的。

代码
#include<algorithm>
#include<cmath>
#include<complex>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<set>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define view(u,k) for(int k=fir[u];~k;k=nxt[k])
#define LL long long
#define maxn 300007
#define ls (u<<1)
#define rs (u<<1|1)
#define mi (l+r>>1)
using namespace std;
int read()
{
    int x=0,f=1;char ch=getchar();
    while(!isdigit(ch)&&ch!='-')ch=getchar();
    if(ch=='-')f=-1,ch=getchar();
    while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
    return x*f;
}
void write(int x)
{
    if(x==0){putchar('0'),putchar(' ');return;}
    int f=0;char ch[20];
    if(x<0)putchar('-'),x=-x;
    while(x)ch[++f]=x%10+'0',x/=10;
    while(f)putchar(ch[f--]);
    putchar(' ');
    return;
}
int t,n,a[maxn],b[maxn],tr[maxn<<2],ta[maxn],tb[maxn],fir[maxn],nxt[maxn];
void pu(int u){tr[u]=min(tr[ls],tr[rs]);}
void add(int u,int l,int r,int x,int k)
{
    if(x<=l&&r<=x){tr[u]=k;return;}
    if(x<=mi)add(ls,l,mi,x,k);
    else add(rs,mi+1,r,x,k);
    pu(u);return;
}
int ask(int u,int l,int r,int x,int y)
{
    if(x<=l&&r<=y)return tr[u];
    int res=n+1;
    if(x<=mi)res=ask(ls,l,mi,x,y);
    if(y>mi)res=min(res,ask(rs,mi+1,r,x,y));
    return res;
}
void build(int u,int l,int r)
{
    if(l==r){tr[u]=a[l];return;}
    build(ls,l,mi),build(rs,mi+1,r),pu(u);return;
}
int main()
{
    t=read();
    while(t--)
    {
        n=read();int ans=1;
        rep(i,1,n)ta[i]=a[i]=read(),fir[i]=-1;
        rep(i,1,n)tb[i]=b[i]=read();
        sort(ta+1,ta+n+1),sort(tb+1,tb+n+1);
        rep(i,1,n)if(ta[i]!=tb[i]){ans=0;break;}
        if(!ans){puts("NO");continue;}
        build(1,1,n);
        dwn(i,n,1){nxt[i]=fir[a[i]],fir[a[i]]=i;}
        rep(i,1,n)
        {
            int pos=fir[b[i]],mn=ask(1,1,n,1,pos);fir[b[i]]=nxt[pos];
            if(mn<b[i]){ans=0;break;}
            add(1,1,n,pos,n+1);
        }
        if(!ans)puts("NO");
        else puts("YES");
    }
    return 0;
}
WAWAWAWA

1.将(b)分成很多段,每一段连续且不下降且尽可能长。若(b)一段中的每个数的个数和(a)对应这一段位置的每个数的个数不同,那么NO,否则YES。
2.最小的数无法往右走但往左走多远都行,…,最大的数无法往左走但往右走多远都行。计算(a)中每个数最多往右走几个、最多往左走几个,如果这个数在(a)中的位置和它在(b)中的位置的差距大于这个范围,就NO,否则YES。
3.正解,但没有判(a,b)整体上是不是所有数的个数一样。
4.正解,但是没有反着求“fir”“nxt”。

以上是关于并不对劲的复健训练-CF1187D的主要内容,如果未能解决你的问题,请参考以下文章

并不对劲的复健训练-bzoj5253:loj2479:p4384:[2018多省联考]制胡窜

[PLAN]暑期复健训练&其他东西

并不对劲的CF1239B&C&D Programming Task in the Train to Catowice City

并不对劲的CF480E:Parking Lot

并不对劲的CF1245E&F:Cleaning Ladders

# cf1187解题报告