算法概论

Posted zhai1997

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了算法概论相关的知识,希望对你有一定的参考价值。

1、算法与数据结构的关系:

(1)数据结构+算法=程序

数据结构是对数据的描述,算法是对数据的操作,因此:数据结构+算法=程序

算法侧重于对解决问题的方法的描述。

程序是对一个算法的具体实现。

(2)联系:

数据结构是算法设计的基础。

算法的操作对象是数据结构。

数据结构设计主要是选择数据的存储方式,算法设计是在选择的数据结构基础上设计一个好的算法。

数据结构关注的是数据的逻辑结构、存储结构、基本操作,而算法关注的是如何在数据结构基础上解决实际问题。

2、算法设计的目标:

(1)正确性:正确地执行预先规定的功能和性能要求。

(2)可使用性(用户友好性):可以很方便地使用。

(3)可读性:易于理解。

(4)健壮性:提供异常处理,能够对不合理的数据进行检查。

(5)高效率与低存储:执行时间短的算法效率高,所需的最大存储容量低的算法好。

3、算法的重要特性:

(1)有限性:执行有限步之后结束。

(2)确定性:每一条指令无二义性。

(3)可行性:每一条运算都能精确地执行。

(4)输入性:一个算法有零个或多个输入。

(5)输出性:一个算法有一个或多个输入。

4、算法分析:

(1)时间复杂度分析:

问题规模:算法的执行时间主要与问题规模有关,它是算法执行输入量的多少,是问题大小的本质表示。如:数组的元素个数、矩阵的阶数。

基本语句:算法的基本语句是执行次数与整个算法的执行次数成正比的语句,他对算法的执行时间贡献最大(最深层循环内的语句)。

技术图片

 

 

 (2)渐进符号

大O符号:f(n)=O(g(n)),f(n)是g(n)的大O,当且仅当存在正常量c和n0,使得当n>=n0时,f(n)<=c(g(n)),即g(n)是f(n)的上界。

大Ω符号:f(n)=Ω(g(n)),f(n)是g(n)的大Ω,当且仅当存在正常量c和n0,使得当n>=n0时,f(n)>=c(g(n)),即g(n)是f(n)的下界

θ符号:f(n)=θ(g(n)),f(n)是g(n)的大θ,当且仅当存在正常量c1,c2和n0,使得当n>=n0时,c1(g(n))<=f(n)<=c2(g(n)),,即g(n)与f(n)同阶

(3)递归算法的时间复杂度分析:

技术图片

 

 规模减小一倍的情况:

void mergesort(int a[],int i,int j){
int m ;
if(i!=j) {
m=(j+i)/2;
mergesort(a,i,m);//归并排序
mergesort(a,m+1,j);
merge(a,i,j,m);//两个有序子序列的合并,非递归函数,时间复杂度为O(n)
}
}

技术图片

 

 

 规模减一的情况:

#include<stdio.h>
void hanoi(int n,char A,char B,char C){//n代表  a柱子上面的盘子数量 
    if(n==1){
        printf("%c->%c
",A,C);//如果只有一个盘子,直接从  A 移动到  C 
    }else{
        hanoi(n-1,A,C,B);//将 n-1个盘子从  A 移动到  B 
        printf("%c->%c
",A,C);
        hanoi(n-1,B,A,C); //将 n-1个盘子从 B 移动到  C 
    } 
} 
main(){
    hanoi(3,A,B,C) ;
} 

技术图片

 

 

 4、递归算法的空间复杂度分析

在对算法的存储空间进行分析的时候,只考虑临时变量所占的空间(形参所占用的空间不计入在内,形参所占用的空间会在调用该算法的算法中去考虑),空间复杂度是对一个算法在运行过程中临时占用的存储空间的度量,也是问题规模n的函数。

int maxelen( int a[],int i,intj){
int mid=(i+j)/2,maxl,max2; //临时变量 
if(i<j)
{
max1=maxelem(a,i,mid);
max2=maxelem(a,mid+1,j);
return(max1>max2)?max1:max2; 
} 
else return a[i];
} 

技术图片

以上是关于算法概论的主要内容,如果未能解决你的问题,请参考以下文章

第一章 概论

算法概论

算法 - 算法概论

概论——习题整理

数据结构与算法概论

266.算法概论(概念 特性 原则)