可视化库matpltlib

Posted lxl616

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了可视化库matpltlib相关的知识,希望对你有一定的参考价值。

 

plt_1

import pandas as pd
unrate = pd.read_csv(unrate.csv)
unrate[DATE] = pd.to_datetime(unrate[DATE])
print(unrate.head(12))
‘‘‘
         DATE  VALUE
0  1948-01-01    3.4
1  1948-02-01    3.8
2  1948-03-01    4.0
3  1948-04-01    3.9
4  1948-05-01    3.5
5  1948-06-01    3.6
6  1948-07-01    3.6
7  1948-08-01    3.9
8  1948-09-01    3.8
9  1948-10-01    3.7
10 1948-11-01    3.8
11 1948-12-01    4.0
‘‘‘

import matplotlib.pyplot as plt
#%matplotlib inline
#Using the different pyplot functions, we can create, customize, and display a plot. For example, we can use 2 functions to :
plt.plot()
plt.show()
技术图片

first_twelve = unrate[0:12]
plt.plot(first_twelve[DATE], first_twelve[VALUE])
plt.show()
技术图片
#While the y-axis looks fine, the x-axis tick labels are too close together and are unreadable
#We can rotate the x-axis tick labels by 90 degrees so they don‘t overlap
#We can specify degrees of rotation using a float or integer value.
plt.plot(first_twelve[DATE], first_twelve[VALUE])
plt.xticks(rotation=45)
#print help(plt.xticks)
plt.show()
技术图片
#xlabel(): accepts a string value, which gets set as the x-axis label.
#ylabel(): accepts a string value, which is set as the y-axis label.
#title(): accepts a string value, which is set as the plot title.

plt.plot(first_twelve[DATE], first_twelve[VALUE])
plt.xticks(rotation=90)
plt.xlabel(Month)
plt.ylabel(Unemployment Rate)
plt.title(Monthly Unemployment Trends, 1948)
plt.show()
技术图片

 

 

plt_2

import pandas as pd
import matplotlib.pyplot as plt

unrate = pd.read_csv(unrate.csv)
unrate[DATE] = pd.to_datetime(unrate[DATE])
first_twelve = unrate[0:12]
plt.plot(first_twelve[DATE], first_twelve[VALUE])
plt.xticks(rotation=90)
plt.xlabel(Month)
plt.ylabel(Unemployment Rate)
plt.title(Monthly Unemployment Trends, 1948)
plt.show()
技术图片

unrate.head()
‘‘‘
             DATE        VALUE
0    1948-01-01    3.4
1    1948-02-01    3.8
2    1948-03-01    4.0
3    1948-04-01    3.9
4    1948-05-01    3.5    
‘‘‘

#add_subplot(first,second,index) first means number of Row,second means number of Column.

import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(3,2,1)
ax2 = fig.add_subplot(3,2,2)
ax2 = fig.add_subplot(3,2,4)
ax2 = fig.add_subplot(3,2,6)
plt.show()
技术图片
import numpy as np
# fig = plt.figure()
fig = plt.figure(figsize=(3, 6)) # 指定画图区域大小
ax1 = fig.add_subplot(2,1,1)
ax2 = fig.add_subplot(2,1,2)

ax1.plot(np.random.randint(1,5,5), np.arange(5))
ax2.plot(np.arange(10)*3, np.arange(10))
plt.show()
技术图片

unrate[MONTH] = unrate[DATE].dt.month
unrate[MONTH] = unrate[DATE].dt.month
fig = plt.figure(figsize=(6,3))

plt.plot(unrate[0:12][MONTH], unrate[0:12][VALUE], c=red) # c 指定折线图颜色
plt.plot(unrate[12:24][MONTH], unrate[12:24][VALUE], c=blue)

plt.show()
技术图片

fig = plt.figure(figsize=(10,6))
colors = [red, blue, green, orange, black]
for i in range(5):
    start_index = i*12
    end_index = (i+1)*12
    subset = unrate[start_index:end_index]
    plt.plot(subset[MONTH], subset[VALUE], c=colors[i])
    
plt.show()
技术图片

fig = plt.figure(figsize=(10,6))
colors = [red, blue, green, orange, black]
for i in range(5):
    start_index = i*12
    end_index = (i+1)*12
    subset = unrate[start_index:end_index]
    
    label = str(1948 + i) # 标签的值
    plt.plot(subset[MONTH], subset[VALUE], c=colors[i], label=label) # label 指定标签
    
plt.legend(loc=best) # 设置 label 的位置
# print(help(plt.legend))
‘‘‘
            ===============   =============
            Location String   Location Code
            ===============   =============
            ‘best‘            0
            ‘upper right‘     1
            ‘upper left‘      2
            ‘lower left‘      3
            ‘lower right‘     4
            ‘right‘           5
            ‘center left‘     6
            ‘center right‘    7
            ‘lower center‘    8
            ‘upper center‘    9
            ‘center‘          10
            ===============   =============
‘‘‘
plt.show()
技术图片

fig = plt.figure(figsize=(10,6))
colors = [red, blue, green, orange, black]
for i in range(5):
    start_index = i*12
    end_index = (i+1)*12
    subset = unrate[start_index:end_index]
    label = str(1948 + i)
    plt.plot(subset[MONTH], subset[VALUE], c=colors[i], label=label)
plt.legend(loc=upper left)
plt.xlabel(Month, Integer)
plt.ylabel(Unemployment Rate, Percent)
plt.title(Monthly Unemployment Trends, 1948-1952)

plt.show()
技术图片
 

 

 

 

plt_3

import pandas as pd
reviews = pd.read_csv(fandango_scores.csv)
cols = [FILM, RT_user_norm, Metacritic_user_nom, IMDB_norm, Fandango_Ratingvalue, Fandango_Stars]
norm_reviews = reviews[cols]
# print(norm_reviews[:1])
norm_reviews.head()
技术图片
import matplotlib.pyplot as plt
from numpy import arange
#The Axes.bar() method has 2 required parameters, left and height. 
#We use the left parameter to specify the x coordinates of the left sides of the bar. 
#We use the height parameter to specify the height of each bar
num_cols = [RT_user_norm, Metacritic_user_nom, IMDB_norm, Fandango_Ratingvalue, Fandango_Stars]

bar_heights = norm_reviews.loc[0, num_cols].values
#print bar_heights
bar_positions = arange(5) + 0.75
#print bar_positions
fig, ax = plt.subplots()
ax.bar(bar_positions, bar_heights, 0.5) # 0.5 表示柱形的宽度
plt.show()
技术图片

arange(5)
‘‘‘
array([0, 1, 2, 3, 4])
‘‘‘

#By default, matplotlib sets the x-axis tick labels to the integer values the bars 
#spanned on the x-axis (from 0 to 6). We only need tick labels on the x-axis where the bars are positioned. 
#We can use Axes.set_xticks() to change the positions of the ticks to [1, 2, 3, 4, 5]:

num_cols = [RT_user_norm, Metacritic_user_nom, IMDB_norm, Fandango_Ratingvalue, Fandango_Stars]
bar_heights = norm_reviews.loc[0, num_cols].values
bar_positions = arange(5)
tick_positions = range(0,5)
fig, ax = plt.subplots()

ax.bar(bar_positions, bar_heights, 0.5)
ax.set_xticks(tick_positions)
ax.set_xticklabels(num_cols, rotation=45)

ax.set_xlabel(Rating Source)
ax.set_ylabel(Average Rating)
ax.set_title(Average User Rating For Avengers: Age of Ultron (2015))
plt.show()
技术图片
import matplotlib.pyplot as plt
from numpy import arange
num_cols = [RT_user_norm, Metacritic_user_nom, IMDB_norm, Fandango_Ratingvalue, Fandango_Stars]

bar_widths = norm_reviews.loc[0, num_cols].values
bar_positions = arange(5) + 0.75
tick_positions = range(1,6)
fig, ax = plt.subplots()
ax.barh(bar_positions, bar_widths, 0.5) # barh 横着画图

ax.set_yticks(tick_positions)
ax.set_yticklabels(num_cols)
ax.set_ylabel(Rating Source)
ax.set_xlabel(Average Rating)
ax.set_title(Average User Rating For Avengers: Age of Ultron (2015))
plt.show()
技术图片
#Let‘s look at a plot that can help us visualize many points.
fig, ax = plt.subplots()
ax.scatter(norm_reviews[Fandango_Ratingvalue], norm_reviews[RT_user_norm])
ax.set_xlabel(Fandango)
ax.set_ylabel(Rotten Tomatoes)
plt.show()
技术图片
#Switching Axes
fig = plt.figure(figsize=(5,10))
ax1 = fig.add_subplot(2,1,1)
ax2 = fig.add_subplot(2,1,2)
ax1.scatter(norm_reviews[Fandango_Ratingvalue], norm_reviews[RT_user_norm])
ax1.set_xlabel(Fandango)
ax1.set_ylabel(Rotten Tomatoes)
ax2.scatter(norm_reviews[RT_user_norm], norm_reviews[Fandango_Ratingvalue])
ax2.set_xlabel(Rotten Tomatoes)
ax2.set_ylabel(Fandango)
plt.show()
技术图片

 

 

plt_4

import pandas as pd
import matplotlib.pyplot as plt
reviews = pd.read_csv(fandango_scores.csv)
cols = [FILM, RT_user_norm, Metacritic_user_nom, IMDB_norm, Fandango_Ratingvalue]
norm_reviews = reviews[cols]
norm_reviews.head()
技术图片

fandango_distribution = norm_reviews[Fandango_Ratingvalue].value_counts()
fandango_distribution = fandango_distribution.sort_index()

imdb_distribution = norm_reviews[IMDB_norm].value_counts()
imdb_distribution = imdb_distribution.sort_index()

print(fandango_distribution.head())
print(imdb_distribution.head())
‘‘‘
2.7    2
2.8    2
2.9    5
3.0    4
3.1    3
Name: Fandango_Ratingvalue, dtype: int64
2.00    1
2.10    1
2.15    1
2.20    1
2.30    2
Name: IMDB_norm, dtype: int64
‘‘‘

fig, ax = plt.subplots()
ax.hist(norm_reviews[Fandango_Ratingvalue]) # hist 值在范围 的数量
ax.hist(norm_reviews[Fandango_Ratingvalue],bins=20) # bins 表示范围的个数
ax.hist(norm_reviews[Fandango_Ratingvalue], range=(4, 5),bins=20) # range=(4, 5)给定范围
plt.show()
技术图片

fig, ax = plt.subplots()
ax.hist(norm_reviews[Fandango_Ratingvalue]) # hist 值在范围 的数量
ax.hist(norm_reviews[Fandango_Ratingvalue],bins=20) # bins 表示范围的个数
label = Fandango_Ratingvalue
ax.hist(norm_reviews[Fandango_Ratingvalue], range=(4, 5),bins=20, label=label) # range=(4, 5)给定范围
plt.legend(loc=upper left)
plt.show()
技术图片

fig = plt.figure(figsize=(5,20))
ax1 = fig.add_subplot(4,1,1)
ax2 = fig.add_subplot(4,1,2)
ax3 = fig.add_subplot(4,1,3)
ax4 = fig.add_subplot(4,1,4)
ax1.hist(norm_reviews[Fandango_Ratingvalue], bins=20, range=(0, 5))
ax1.set_title(Distribution of Fandango Ratings)
ax1.set_ylim(0, 50) # 设置 y 轴的范围

ax2.hist(norm_reviews[RT_user_norm], 20, range=(0, 5))
ax2.set_title(Distribution of Rotten Tomatoes Ratings)
ax2.set_ylim(0, 50)
ax3.hist(norm_reviews[Metacritic_user_nom], 20, range=(0, 5))
ax3.set_title(Distribution of Metacritic Ratings)
ax3.set_ylim(0, 50)

ax4.hist(norm_reviews[IMDB_norm], 20, range=(0, 5))
ax4.set_title(Distribution of IMDB Ratings)
ax4.set_ylim(0, 50)

plt.show()
技术图片

fig, ax = plt.subplots()
ax.boxplot(norm_reviews[RT_user_norm]) # 盒图
ax.set_xticklabels([Rotten Tomatoes])
ax.set_ylim(0, 5)
plt.show()
技术图片

num_cols = [RT_user_norm, Metacritic_user_nom, IMDB_norm, Fandango_Ratingvalue]
fig, ax = plt.subplots()
ax.boxplot(norm_reviews[num_cols].values)
ax.set_xticklabels(num_cols, rotation=90)
ax.set_ylim(0,5)
plt.show()
技术图片

 

 

 

plt_5

import pandas as pd
import matplotlib.pyplot as plt

women_degrees = pd.read_csv(percent-bachelors-degrees-women-usa.csv)
plt.plot(women_degrees[Year], women_degrees[Biology])
plt.show()
技术图片

women_degrees.head()

#100-women_degrees means men
plt.plot(women_degrees[Year], women_degrees[Biology], c=blue, label=Women)
plt.plot(women_degrees[Year], 100-women_degrees[Biology], c=green, label=Men)
plt.legend(loc=upper right)
plt.title(Percentage of Biology Degrees Awarded By Gender)
plt.show()
技术图片

fig, ax = plt.subplots()
# Add your code here.
fig, ax = plt.subplots()
ax.plot(women_degrees[Year], women_degrees[Biology], label=Women)
ax.plot(women_degrees[Year], 100-women_degrees[Biology], label=Men)

ax.tick_params(bottom="off", top="off", left="off", right="off")
ax.set_title(Percentage of Biology Degrees Awarded By Gender)
ax.legend(loc="upper right")

plt.show()
技术图片

fig, ax = plt.subplots()
ax.plot(women_degrees[Year], women_degrees[Biology], c=blue, label=Women)
ax.plot(women_degrees[Year], 100-women_degrees[Biology], c=green, label=Men)
ax.tick_params(bottom="off", top="off", left="off", right="off")

for key,spine in ax.spines.items():
    spine.set_visible(False)
# End solution code.
ax.legend(loc=upper right)
plt.show()
技术图片

major_cats = [Biology, Computer Science, Engineering, Math and Statistics]
fig = plt.figure(figsize=(12, 12))

for sp in range(0,4):
    ax = fig.add_subplot(2,2,sp+1)
    ax.plot(women_degrees[Year], women_degrees[major_cats[sp]], c=blue, label=Women)
    ax.plot(women_degrees[Year], 100-women_degrees[major_cats[sp]], c=green, label=Men)
    # Add your code here.

# Calling pyplot.legend() here will add the legend to the last subplot that was created.
plt.legend(loc=upper right)
plt.show()
技术图片

major_cats = [Biology, Computer Science, Engineering, Math and Statistics]
fig = plt.figure(figsize=(12, 12))

for sp in range(0,4):
    ax = fig.add_subplot(2,2,sp+1)
    ax.plot(women_degrees[Year], women_degrees[major_cats[sp]], c=blue, label=Women)
    ax.plot(women_degrees[Year], 100-women_degrees[major_cats[sp]], c=green, label=Men)
    for key,spine in ax.spines.items():
        spine.set_visible(False)
    ax.set_xlim(1968, 2011)
    ax.set_ylim(0,100)
    ax.set_title(major_cats[sp])
    ax.tick_params(bottom="off", top="off", left="off", right="off")

# Calling pyplot.legend() here will add the legend to the last subplot that was created.
plt.legend(loc=upper right)
plt.show()
技术图片 

 

 

 

plt_6

#Color
import pandas as pd
import matplotlib.pyplot as plt

women_degrees = pd.read_csv(percent-bachelors-degrees-women-usa.csv)
major_cats = [Biology, Computer Science, Engineering, Math and Statistics]


cb_dark_blue = (0/255, 107/255, 164/255)
cb_orange = (255/255, 128/255, 14/255)

fig = plt.figure(figsize=(12, 12))

for sp in range(0,4):
    ax = fig.add_subplot(2,2,sp+1)
    # The color for each line is assigned here.
    ax.plot(women_degrees[Year], women_degrees[major_cats[sp]], c=cb_dark_blue, label=Women)
    ax.plot(women_degrees[Year], 100-women_degrees[major_cats[sp]], c=cb_orange, label=Men)
    for key,spine in ax.spines.items():
        spine.set_visible(False)
    ax.set_xlim(1968, 2011)
    ax.set_ylim(0,100)
    ax.set_title(major_cats[sp])
    ax.tick_params(bottom="off", top="off", left="off", right="off")

plt.legend(loc=upper right)
plt.show()
技术图片
#Setting Line Width
cb_dark_blue = (0/255, 107/255, 164/255)
cb_orange = (255/255, 128/255, 14/255)

fig = plt.figure(figsize=(12, 12))

for sp in range(0,4):
    ax = fig.add_subplot(2,2,sp+1)
    # Set the line width when specifying how each line should look.
    ax.plot(women_degrees[Year], women_degrees[major_cats[sp]], c=cb_dark_blue, label=Women, linewidth=10)
    ax.plot(women_degrees[Year], 100-women_degrees[major_cats[sp]], c=cb_orange, label=Men, linewidth=10)
    for key,spine in ax.spines.items():
        spine.set_visible(False)
    ax.set_xlim(1968, 2011)
    ax.set_ylim(0,100)
    ax.set_title(major_cats[sp])
    ax.tick_params(bottom="off", top="off", left="off", right="off")

plt.legend(loc=upper right)
plt.show()
技术图片

stem_cats = [Engineering, Computer Science, Psychology, Biology, Physical Sciences, Math and Statistics]
fig = plt.figure(figsize=(18, 3))

for sp in range(0,6):
    ax = fig.add_subplot(1,6,sp+1)
    ax.plot(women_degrees[Year], women_degrees[stem_cats[sp]], c=cb_dark_blue, label=Women, linewidth=3)
    ax.plot(women_degrees[Year], 100-women_degrees[stem_cats[sp]], c=cb_orange, label=Men, linewidth=3)
    for key,spine in ax.spines.items():
        spine.set_visible(False)
    ax.set_xlim(1968, 2011)
    ax.set_ylim(0,100)
    ax.set_title(stem_cats[sp])
    ax.tick_params(bottom="off", top="off", left="off", right="off")

plt.legend(loc=upper right)
plt.show()
技术图片

fig = plt.figure(figsize=(18, 3))

for sp in range(0,6):
    ax = fig.add_subplot(1,6,sp+1)
    ax.plot(women_degrees[Year], women_degrees[stem_cats[sp]], c=cb_dark_blue, label=Women, linewidth=3)
    ax.plot(women_degrees[Year], 100-women_degrees[stem_cats[sp]], c=cb_orange, label=Men, linewidth=3)
    for key,spine in ax.spines.items():
        spine.set_visible(False)
    ax.set_xlim(1968, 2011)
    ax.set_ylim(0,100)
    ax.set_title(stem_cats[sp])
    ax.tick_params(bottom="off", top="off", left="off", right="off")
plt.legend(loc=upper right)
plt.show()
fig = plt.figure(figsize=(18, 3))

for sp in range(0,6):
    ax = fig.add_subplot(1,6,sp+1)
    ax.plot(women_degrees[Year], women_degrees[stem_cats[sp]], c=cb_dark_blue, label=Women, linewidth=3)
    ax.plot(women_degrees[Year], 100-women_degrees[stem_cats[sp]], c=cb_orange, label=Men, linewidth=3)
    for key,spine in ax.spines.items():
        spine.set_visible(False)
    ax.set_xlim(1968, 2011)
    ax.set_ylim(0,100)
    ax.set_title(stem_cats[sp])
    ax.tick_params(bottom="off", top="off", left="off", right="off")
    
    if sp == 0:
        ax.text(2005, 87, Men) # 指定文本在图标坐标位置
        ax.text(2002, 8, Women)
    elif sp == 5:
        ax.text(2005, 62, Men)
        ax.text(2001, 35, Women)
plt.show()
技术图片 

以上是关于可视化库matpltlib的主要内容,如果未能解决你的问题,请参考以下文章

深度学习-CNN tensorflow 可视化

json 可视代码工作室Angular with Firebase片段

Chrome-Devtools代码片段中的多个JS库

Xamarin Android 片段库

typescript Angular 2测试片段。代码库https://developers.livechatinc.com/blog/category/programming/angular-2/

在 zxing 片段库中打开/关闭手电筒