[POJ3696]The Luckiest number
Posted pjykk
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[POJ3696]The Luckiest number相关的知识,希望对你有一定的参考价值。
( ext{Description})
- ( ext{Given a number }L(Lleqslant 2,000,000,000), ext{find a number }x, ext{ so that }L|8 imes(10^x-1)/9.)
- ( ext{Output the length of }x. ext{If x doesn't exist, output 0.})
( ext{Method})
[L|8 imes(10^x-1)/9]
( ext{Let }M=dfrac{9L}{gcd(L,8)},)
[M|10^x-1]
[10^xequiv 1pmod{M}]
( ext{Use Euler's Theorem}quad gcd(a,m)=1Rightarrow a^{varphi(m)}equiv 1pmod{m},)
( ext{If }gcd(10,M) ext{ equals }1:)
[x|varphi(M)]
( ext{Then count the divisors of }varphi(M), ext{ and find the smallest }x.)
( ext{Else}:)
[x ext{ doesn't exist.}]
( ext{Code})
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define int long long
using namespace std;
int qmul(int a,int b,int mod)
{
if(a==0||b==0||mod==1ll)return 0;
if(b==1ll)return a%mod;
int ans=qmul(a,b/2ll,mod);
ans+=ans,ans%=mod;
if(b%2ll)ans+=a,ans%=mod;
return ans;
}
int qpow(int a,int b,int mod)
{
if(a==0||mod==1ll)return 0;
if(b==0)return 1ll;
int ans=qpow(a,b/2ll,mod);
ans=qmul(ans,ans,mod),ans%=mod;
if(b%2ll)ans=qmul(ans,a,mod),ans%=mod;
return ans;
}
int gcd(int a,int b)
{
if(b==0)return a;
else return gcd(b,a%b);
}
int geteuler(int n)
{
if(n==1ll)return 0;
int limit=sqrt(n),ans=n;
for(int i=2ll;i<=limit;i++)
if(n%i==0)
{
ans-=ans/i;
while(n%i==0)n/=i;
}
if(n>1ll)ans-=ans/n;
return ans;
}
int calc(int l)
{
int x=l/gcd(l,8ll)*9ll;
int flag=gcd(10ll,x);
if(flag!=1ll)return 0;
int phi=geteuler(x);
int limit=sqrt(phi),smallest;
for(int i=1ll;i<=limit;i++)
if(phi%i==0)
{
if(qpow(10,i,x)==1)return i;
int another=phi/i;
if(qpow(10,another,x)==1)smallest=another;
}
return smallest;
}
int n,cnt;
signed main()
{
while(~scanf("%lld",&n))
{
if(n==0)break;
cnt++;
printf("Case %lld: %lld
",cnt,calc(n));
}
return 0;
}
以上是关于[POJ3696]The Luckiest number的主要内容,如果未能解决你的问题,请参考以下文章