Graph machine learning 工具

Posted jeshy

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Graph machine learning 工具相关的知识,希望对你有一定的参考价值。

OGB: Open Graph Benchmark

https://ogb.stanford.edu/

https://github.com/snap-stanford/ogb

OGB is a collection of benchmark datasets, data-loaders and evaluators for graph machine learning in PyTorch.

Data-loaders are fully compatible with PyTorch Geometric (PYG) and Deep Graph Library (DGL). The goal is to have an easily-accessible standardized large-scale benchmark datasets to drive research in graph machine learning.

 技术图片

Deep Graph Library (DGL)

https://www.dgl.ai/

https://github.com/dmlc/dgl

DGL works on PyTorch 0.4.1+ and MXNet nightly build

PyTorch Geometric (PYG)

https://pytorch-geometric.readthedocs.io/en/latest/

https://github.com/rusty1s/pytorch_geometric

 

PyGSP:Graph Signal Processing in Python

https://pygsp.readthedocs.io/en/stable/index.html

https://pygsp.readthedocs.io/en/stable/reference/index.html

Development: https://github.com/epfl-lts2/pygsp.git

https://github.com/wangg12/pygsp.git

 

networkx

https://pypi.org/project/networkx/

https://github.com/networkx/networkx

Website : http://networkx.github.io/

 

igraph:network analysis tools. igraph can be programmed in R, Python, Mathematica and C/C++.

https://igraph.org/

 

graph-tools,Efficient network analysis

https://graph-tool.skewed.de/

https://git.skewed.de/count0/graph-tool

https://graph-tool.skewed.de/static/doc/index.html

https://github.com/solstag/graph-tool

 

Agglomerative cluster tool (pip install agglomcluster)

https://github.com/MSeal/agglom_cluster

http://arxiv.org/pdf/cond-mat/0309508v1.pdf

 

因果关系推理,causal inference in graphs and in the pairwise settings

https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox

https://diviyan-kalainathan.github.io/CausalDiscoveryToolbox/html/index.html

pip install cdt

Causal Discovery Toolbox: Uncover causal relationships in Python

https://arxiv.org/abs/1903.02278

以上是关于Graph machine learning 工具的主要内容,如果未能解决你的问题,请参考以下文章

Azure Machine Learning Studio与Workbench

Machine Learning—支持向量机(SVM)

因果推断笔记——DML :Double Machine Learning案例学习(十六)

因果推断笔记——DML :Double Machine Learning案例学习(十六)

关于学习machine learning的一些基本知识点

如何在Tensorflow中使用自定义/非默认tf.Graph正确的方法?